56,946 research outputs found
Recommended from our members
Distributed simulation and the grid: Position statements
The Grid provides a new and unrivaled technology for large scale distributed simulation as it enables collaboration and the use of distributed computing resources. This panel paper presents the views of four researchers in the area of Distributed Simulation and the Grid. Together we try to identify the main research issues involved in applying Grid technology to distributed simulation and the key future challenges that need to be solved to achieve this goal. Such challenges include not only technical challenges, but also political ones such as management methodology for the Grid and the development of standards. The benefits of the Grid to end-user simulation modelers also are discussed
Height Measurements of OI (557.7 nm) Gravity Wave Structure Over the Hawaiian Islands During ALOHA-93
During the ALOHAâ93 campaign simultaneous observations of gravity wave structure in the OI(557.7 nm) nightglow emission were made using two allâsky CCD imagers; one located near the summit of Haleakala Crater, Maui and the other at Mauna Loa Observatory, Hawaii. On 19 October a set of bright, planar, monochromatic waves was imaged by both systems as it progressed rapidly over the Hawaiian Islands. Triangulation on these wave forms indicates a mean altitude of 95±2 km in good agreement with previous rocket soundings at midâlatitudes. Two methods of triangulation were employed, both achieving similar results
Rotational predissociation of extremely weakly bound atom-molecule complexes produced by Feshbach resonance association
We study the rotational predissociation of atom - molecule complexes with
very small binding energy. Such complexes can be produced by Feshbach resonance
association of ultracold molecules with ultracold atoms. Numerical calculations
of the predissociation lifetimes based on the computation of the energy
dependence of the scattering matrix elements become inaccurate when the binding
energy is smaller than the energy width of the predissociating state. We derive
expressions that represent accurately the predissociation lifetimes in terms of
the real and imaginary parts of the scattering length and effective range for
molecules in an excited rotational state. Our results show that the
predissociation lifetimes are the longest when the binding energy is positive,
i.e. when the predissociating state is just above the excited state threshold.Comment: 17 pages, 5 figure
âŻPower to the Workers? A qualitative study of workers' experiences of a 4-day working week
The pandemic has resulted in seismic shifts to all aspects of our lives, including views concerning the organisation of work. One impact is the acceleration of workers questioning traditional life stages, of work then retirement, and what they want out of life (Cable & Gratton, 2022) As quality of life is acknowledged as a driving force for many employees leaving their current jobs (Fuller & Kerr, 2022), the implications of a four-day working week are currently being investigated (Miller, 2022). Drawing on a small-scale study at an automotive supplier, based in the North-East of England, this case study will present findings from qualitative interviews conducted with employees who are experiencing a newly established 4-day working week. From the findings presented, discussions will highlight implications of this shift in the organisation of the working week for employees across the organisation. It is intended that the findings and discussions will raise relevant, contemporary questions for the business community more generally
Aharonov-Casher oscillations of spin current through a multichannel mesoscopic ring
The Aharonov-Casher (AC) oscillations of spin current through a 2D ballistic
ring in the presence of Rashba spin-orbit interaction and external magnetic
field has been calculated using the semiclassical path integral method. For
classically chaotic trajectories the Fokker-Planck equation determining
dynamics of the particle spin polarization has been derived. On the basis of
this equation an analytic expression for the spin conductance has been obtained
taking into account a finite width of the ring arms carrying large number of
conducting channels. It was shown that the finite width results in a broadening
and damping of spin current AC oscillations. We found that an external magnetic
field leads to appearance of new nondiagonal components of the spin
conductance, allowing thus by applying a rather weak magnetic field to change a
direction of the transmitted spin current polarization.Comment: 16 pages, 6 figure
The Non-Relativistic Evolution of GRBs 980703 and 970508: Beaming-Independent Calorimetry
We use the Sedov-Taylor self-similar solution to model the radio emission
from the gamma-ray bursts (GRBs) 980703 and 970508, when the blastwave has
decelerated to non-relativistic velocities. This approach allows us to infer
the energy independent of jet collimation. We find that for GRB 980703 the
kinetic energy at the time of the transition to non-relativistic evolution,
t_NR ~ 40 d, is E_ST ~ (1-6)e51 erg. For GRB 970508 we find E_ST ~ 3e51 erg at
t_NR ~ 100 d, nearly an order of magnitude higher than the energy derived in
Frail, Waxman and Kulkarni (2000). This is due primarily to revised
cosmological parameters and partly to the maximum likelihood fit we use here.
Taking into account radiative losses prior to t_NR, the inferred energies agree
well with those derived from the early, relativistic evolution of the
afterglow. Thus, the analysis presented here provides a robust,
geometry-independent confirmation that the energy scale of cosmological GRBs is
about 5e51 erg, and additionally shows that the central engine in these two
bursts did not produce a significant amount of energy in mildly relativistic
ejecta at late time. Furthermore, a comparison to the prompt energy release
reveals a wide dispersion in the gamma-ray efficiency, strengthening our
growing understanding that E_gamma is a not a reliable proxy for the total
energy.Comment: Submitted to ApJ; 13 pages, 6 figures, 1 table; high-resolution
figures can be found at: http://www.astro.caltech.edu/~ejb/NR
Domain walls in supersymmetric QCD: from weak to strong coupling
We consider domain walls that appear in supersymmetric QCD with Nf < Nc
massive flavours. In particular, for 2 Nf < Nc we explicitly construct the
domain walls that interpolate between vacua labeled by i and (i+ N_f). We show
that these solutions are Bogomol'nyi-Prasad-Sommerfield (BPS) saturated for any
value of the mass of the matter fields. This fact allows us to evaluate the
large mass limit of these domain walls. We comment on the relevance of these
solutions for supersymmetric gluodynamics.Comment: 4 pages, 4 figures, LaTex, uses psfig.st
Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence
The turbulent transport of impurity particles in plasma edge turbulence is
investigated. The impurities are modeled as a passive fluid advected by the
electric and polarization drifts, while the ambient plasma turbulence is
modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive
drift-wave turbulence. The features of the turbulent transport of impurities
are investigated by numerical simulations using a novel code that applies
semi-Lagrangian pseudospectral schemes. The diffusive character of the
turbulent transport of ideal impurities is demonstrated by relative-diffusion
analysis of the evolution of impurity puffs. Additional effects appear for
inertial impurities as a consequence of compressibility. First, the density of
inertial impurities is found to correlate with the vorticity of the electric
drift velocity, that is, impurities cluster in vortices of a precise
orientation determined by the charge of the impurity particles. Second, a
radial pinch scaling linearly with the mass--charge ratio of the impurities is
discovered. Theoretical explanation for these observations is obtained by
analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is
published, it will be found at http://pop.aip.org/pop
- âŠ