8,396 research outputs found

    Exercise-induced abdominal muscle fatigue in healthy humans

    Get PDF
    Exercise-induced abdominal muscle fatigue in healthy humans. J Appl Physiol 100: 1554–1562, 2006. First published January 19, 2006; doi:10.1152/japplphysiol.01389.2005.—The abdominal muscles have been shown to fatigue in response to voluntary isocapnic hyperpnea using direct nerve stimulation techniques. We investigated whether the abdominal muscles fatigue in response to dynamic lower limb exercise using such techniques. Eleven male subjects [peak oxygen uptake (V˙ O2 peak) 50.0 1.9 (SE) ml kg 1 min 1] cycled at 90% V˙ O2 peak to exhaustion (14.2 4.2 min). Abdominal muscle function was assessed before and up to 30 min after exercise by measuring the changes in gastric pressure (Pga) after the nerve roots supplying the abdominal muscles were magnetically stimulated at 1–25 Hz. Immediately after exercise there was a decrease in Pga at all stimulation frequencies (mean 25 4%; P 0.001) that persisted up to 30 min postexercise ( 12 4%; P 0.001). These reductions were unlikely due to changes in membrane excitability because amplitude, duration, and area of the rectus abdominis M wave were unaffected. Declines in the Pga response to maximal voluntary expiratory efforts occurred after exercise (158 13 before vs. 145 10 cmH2O after exercise; P 0.005). Voluntary activation, assessed using twitch interpolation, did not change (67 6 before vs. 64 2% after exercise; P 0.20), and electromyographic activity of the rectus abdominis and external oblique increased during these volitional maneuvers. These data provide new evidence that the abdominal muscles fatigue after sustained, high-intensity exercise and that the fatigue is primarily due to peripheral mechanisms

    Engaging professional societies in developing work-ready graduates

    Full text link
    Since the 1990s universities have faced increasing pressure to better prepare graduates for the workforce. Employers, professional societies and the government are increasingly calling for graduates who are work-ready. In this paper we identify the drivers of the work-ready initiative and present definitions and components of our identified professional work-ready attributes and skills. University graduates are expected to have more than just the discipline-based knowledge and skills that universities traditionally teach. In exploring the tensions, challenges and opportunities that this changing educational environment presents, this paper investigates the key graduate attributes, skills and criteria for successful careers in the professional workplace. Working in consultation with professional societies, our project aims to identify and contextualise work-ready skills to each of the targeted disciplines Information Technology and Business to maximise student relevance. We aim to rejuvenate the current curriculum to improve the development of students work-ready skills by integrating into the curriculum new work-ready subjects and learning activities within existing subjects. Skills identified by professional societies are critical for contemporary university graduates, and are being used to develop effective teaching and learning strategies, tutorials, activities and case-studies

    Involvement of N-methyl-D-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans

    Full text link
    Plasticity can be induced at human corticospinalmotoneuronal synapses by delivery of repeated, paired stimuli to corticospinal axons and motoneurons in a technique called paired corticospinal-motoneuronal stimulation (PCMS). To date, the mechanisms of the induced plasticity are unknown. To determine whether PCMS-induced plasticity is dependent on N-methyl-D-aspartate receptors (NMDARs), the effect of the noncompetitive NMDAR antagonist dextromethorphan on PCMS-induced facilitation was assessed in a 2-day, double-blind, placebo-controlled experiment. PCMS consisted of 100 pairs of stimuli, delivered at an interstimulus interval that produces facilitation at corticospinal-motoneuronal synapses that excite biceps brachii motoneurons. Transcranial magnetic stimulation elicited corticospinal volleys, which were timed to arrive at corticospinal-motoneuronal synapses just before antidromic potentials elicited in motoneurons with electrical brachial plexus stimulation. To measure changes in the corticospinal pathway at a spinal level, biceps responses to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were measured before and for 30 min after PCMS. Individuals who displayed a ≥10% increase in CMEP size after PCMS on screening were eligible to take part in the 2-day experiment. After PCMS, there was a significant difference in CMEP area between placebo and dextromethorphan days (P ~ 0.014). On the placebo day PCMS increased average CMEP areas to 127 = 46% of baseline, whereas on the dextromethorphan day CMEP area was decreased to 86 = 33% of baseline (mean = SD; placebo: n ~ 11, dextromethorphan: n ~ 10). Therefore, dextromethorphan suppressed the facilitation of CMEPs after PCMS. This indicates that plasticity induced at synapses in the human spinal cord by PCMS may be dependent on NMDARs. NEW & NOTEWORTHY Paired corticospinal-motoneuronal stimulation can strengthen the synaptic connections between corticospinal axons and motoneurons at a spinal level in humans. The mechanism of the induced plasticity is unknown. In our 2-day, double-blind, placebo-controlled study we show that the N-methyl-D-aspartate receptor (NMDAR) antagonist dextromethorphan suppressed plasticity induced by paired corticospinal-motoneuronal stimulation, suggesting that an NMDAR-dependent mechanism is involved

    Structure of Drosophila melanogaster ARC1 reveals a repurposed molecule with characteristics of retroviral Gag

    Get PDF
    The tetrapod neuronal protein ARC and its Drosophila melanogaster homolog, dARC1, have important but differing roles in neuronal development. Both are thought to originate through exaptation of ancient Ty3/Gypsy retrotransposon Gag, with their novel function relying on an original capacity for self-assembly and encapsidation of nucleic acids. Here, we present the crystal structure of dARC1 CA and examine the relationship between dARC1, mammalian ARC, and the CA protein of circulating retroviruses. We show that while the overall architecture is highly related to that of orthoretroviral and spumaretroviral CA, there are substantial deviations in both amino- and carboxyl-terminal domains, potentially affecting recruitment of partner proteins and particle assembly. The degree of sequence and structural divergence suggests that Ty3/Gypsy Gag has been exapted on two separate occasions and that, although mammalian ARC and dARC1 share functional similarity, the structures have undergone different adaptations after appropriation into the tetrapod and insect genomes

    Muscle fiber and motor unit behavior in the longest human skeletal muscle

    Get PDF
    The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers

    A prospective observational study of the impact of an electronic questionnaire (ePAQ-PO) on the duration of nurse-led pre-operative assessment and patient satisfaction.

    Get PDF
    OBJECTIVE: Standard pre-operative assessment at our institution involves a comprehensive history and examination by a nurse practitioner. An electronic pre-operative assessment questionnaire, ePAQ-PO® (ePAQ, Sheffield, UK) has previously been developed and validated. This study aimed to determine the impact of ePAQ-PO on nurse consultation times and patient satisfaction in low-risk patients. METHODS: The duration of pre-operative assessment consultation was recorded for American Society of Anesthesiology physical classification 1 and 2 patients undergoing pre-operative assessment by an electronic questionnaire (ePAQ-PO group) and standard face-to-face assessment by a nurse practitioner (standard group). Patients were also asked to complete an eight-item satisfaction questionnaire. Eighty-six patients were included (43 in each group). RESULTS: After adjusting for the duration of physical examination, median (IQR [min-max]) consultation time was longer in the standard compared to the ePAQ-PO group (25 (18-33 [10-49]) min vs. 12 (8-17 [4-45]) min, respectively; p <0.001). Response rate for the satisfaction questionnaire was 93%. There was no significant difference in patient satisfaction scores (38/39 in standard group vs. 39/41 in ePAQ-PO group were fully satisfied with their pre-operative assessment; p = 0.494). CONCLUSION: Pre-operative assessment using ePAQ-PO is associated with a significant reduction of over 50% in the duration of the assessment without impacting on patient satisfaction

    Supraspinal fatigue in human inspiratory muscles with repeated sustained maximal efforts

    Full text link
    To investigate the involvement of supraspinal fatigue in the loss of maximal inspiratory pressure (PImax), we fatigued the inspiratory muscles. Six participants performed 5 sustained maximal isometric inspiratory efforts (15-s contractions, duty cycle ~75%) which reduced PImax, as measured from esophageal and mouth pressure, to around half of their initial maximums. Transcranial magnetic stimulation (TMS) delivered over the motor cortex near the beginning and end of each maximal effort evoked superimposed twitch-like increments in the ongoing PImax, increasing from ~1.0% of PImax in the unfatigued contractions to ≥40% of ongoing PImax for esophageal and mouth pressures. The rate of increase in the superimposed twitch as PImax decreased with fatigue was not significantly different between the esophageal and mouth pressure measures. The inverse relationship between superimposed twitch pressure and PImax indicates a progressive decline in the ability of motor cortical output to drive the inspiratory muscles maximally, leading to the development of supraspinal fatigue. TMS also evoked silent periods in the electromyographic recordings of diaphragm, scalenes, and parasternal intercostal. The duration of the silent period increased with fatigue in all three muscles, which suggests greater intracortical inhibition, with the largest change observed in the diaphragm. The peak rate of relaxation in pressure during the silent period slowed as fatigue developed, indicating peripheral contractile changes in the active inspiratory muscles. These changes in the markers of fatigue show that both central and peripheral fatigue contribute to the loss in PImax when inspiratory muscles are fatigued with repeated sustained maximal efforts. NEW & NOTEWORTHY When the inspiratory muscles are fatigued with repeated sustained maximal efforts, supraspinal fatigue, a component of central fatigue, contributes to the loss in maximal inspiratory pressure. The presence of supraspinal fatigue was confirmed by the increase in amplitude of twitch-like increments in pressure evoked by motor cortical stimulation during maximal efforts, indicating that motor cortical output was not maximal as extra muscle force could be generated to increase inspiratory pressure

    Automatic Quantification of Epidermis Curvature in H&E Stained Microscopic Skin Image of Mice

    Get PDF
    Changes in the curvature of the epidermis layer is often associated with many skin disorders, such as ichthyoses and generic effects of ageing. Therefore, methods to quantify changes in the curvature are of a scientific and clinical interest. Manual methods to determine curvature are both laborious and intractable to large scale investigations. This paper proposes an automatic algorithm to quantify curvature of microscope images of H&E-stained murine skin. The algorithm can be divided into three key stages. First, skin layers segmentation based on colour deconvolution to separate the original image into three channels of different representations to facilitate segmenting the image into multiple layers, namely epidermis, dermis and subcutaneous layers. The algorithm then further segments the epidermis layer into cornified and basal sub-layers. Secondly, it quantifies the curvature of the epidermis layer by measuring the difference between the epidermis edge and a straight line (theoretical reference line) connecting the two far sides of the epidermis edge. Finally, the curvature measurements extracted from a large number of images of mutant mice are used to identify a list of genes responsible for changes in the epidermis curvature. A dataset of 5714 H&E microscopic images of mutant and wild type mice were used to evaluate the effectiveness of the algorithm

    Platelet-Induced Clumping of Plasmodium falciparum–Infected Erythrocytes from Malawian Patients with Cerebral Malaria—Possible Modulation In Vivo by Thrombocytopenia

    Get PDF
    Platelets may play a role in the pathogenesis of human cerebral malaria (CM), and they have been shown to induce clumping of Plasmodium falciparum–parasitized red blood cells (PRBCs) in vitro. Both thrombocytopenia and platelet-inducedPRBCclumping are associated with severe malaria and, especially, withCM.In the present study, we investigated the occurrence of the clumping phenomenon in patients with CM by isolating and coincubating their plasma and PRBCs ex vivo. Malawian children with CM all had low platelet counts, with the degree of thrombocytopenia directly proportional to the density of parasitemia. Plasma samples obtained from these patients subsequently induced weak PRBC clumping. When the assays were repeated, with the plasma platelet concentrations adjusted to within the physiological range considered to be normal, massive clumping occurred. The results of this study suggest that thrombocytopenia may, through reduction of platelet-mediated clumping of PRBCs, provide a protective mechanism for the host during CM
    • …
    corecore