300 research outputs found

    First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties

    Full text link
    Solid-solution strengthening results from solutes impeding the glide of dislocations. Existing theories of strength rely on solute-dislocation interactions, but do not consider dislocation core structures, which need an accurate treatment of chemical bonding. Here, we focus on strengthening of Mg, the lightest of all structural metals and a promising replacement for heavier steel and aluminum alloys. Elasticity theory, which is commonly used to predict the requisite solute-dislocation interaction energetics, is replaced with quantum-mechanical first-principles calculations to construct a predictive mesoscale model for solute strengthening of Mg. Results for 29 different solutes are displayed in a "strengthening design map" as a function of solute misfits that quantify volumetric strain and slip effects. Our strengthening model is validated with available experimental data for several solutes, including Al and Zn, the two most common solutes in Mg. These new results highlight the ability of quantum-mechanical first-principles calculations to predict complex material properties such as strength.Comment: 9 pages, 7 figures, 2 table

    Plasma-derived proteomic biomarkers in human leukocyte antigen-haploidentical or human leukocyte antigen-matched bone marrow transplantation using post-transplantation cyclophosphamide

    Get PDF
    Recent studies have suggested that plasma-derived proteins may be potential biomarkers relevant for graft-versus-host disease and/or non-relapse mortality occurring after allogeneic blood or marrow transplantation. However, none of these putative biomarkers have been assessed in patients treated either with human leukocyte antigen-haploidentical blood or marrow transplantation or with post-transplantation cyclophosphamide, which has been repeatedly associated with low rates of severe acute graft-versus-host disease, chronic graft-versus-host disease, and non-relapse mortality. We explored whether seven of these plasma-derived proteins, as measured by enzyme-linked immunosorbent assays, were predictive of clinical outcomes in post-transplantation cyclophosphamide-treated patients using plasma samples collected at serial predetermined timepoints from patients treated on prospective clinical studies of human leukocyte antigen-haploidentical (n=58; clinicaltrials.gov Identifier: 00796562) or human leukocyte antigen-matched-related or -unrelated (n=100; clinicaltrials.gov Identifiers: 00134017 and 00809276) T-cell-replete bone marrow transplantation. Day 30 levels of interleukin-2 receptor α, tumor necrosis factor receptor 1, serum STimulation-2 (IL1RL1 gene product), and regenerating islet-derived 3-α all had high areas under the curve of 0.74–0.97 for predicting non-relapse mortality occurrence by 3 months post-transplant in both the human leukocyte antigen-matched and human leukocyte antigen-haploidentical cohorts. In both cohorts, all four of these proteins were also predictive of subsequent non-relapse mortality occurring by 6, 9, or 12 months post-transplant and were significantly associated with non-relapse mortality in univariable analyses. Furthermore, day 30 elevations of interleukin-2 receptor α were associated with grade II–IV and III–IV acute graft-versus-host disease occurring after day 30 in both cohorts. These data confirm that plasma-derived proteins previously assessed in other transplantation platforms appear to retain prognostic and predictive utility in patients treated with post-transplantation cyclophosphamide

    Molecular Epidemiology and Evolution of Human Respiratory Syncytial Virus and Human Metapneumovirus

    Get PDF
    Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, the Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups

    Interplay between elastic instabilities and shear-banding: three categories of Taylor–Couette flows and beyond

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatiotemporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the shear-banding flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. The criterion for purely elastic Taylor–Couette instability adapted to shear-banding flows suggested three categories of shear-banding depending on their stability. In the present study, we report on a large set of experimental data which demonstrates the existence of the three categories of shear-banding flows in various surfactant solutions. Consistent with theoretical predictions, increases in the surfactant concentration or in the curvature of the geometry destabilize the flow, whereas an increase in temperature stabilizes the flow. However, experiments also exhibit some interesting behaviors going beyond the purely elastic instability criterion.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Strategies to Prevent Healthcare-Associated Infections through Hand Hygiene

    Get PDF
    Previously published guidelines provide comprehensive recommendations for hand hygiene in healthcare facilities. The intent of this document is to highlight practical recommendations in a concise format, update recommendations with the most current scientific evidence, and elucidate topics that warrant clarification or more robust research. Additionally, this document is designed to assist healthcare facilities in implementing hand hygiene adherence improvement programs, including efforts to optimize hand hygiene product use, monitor and report back hand hygiene adherence data, and promote behavior change. This expert guidance document is sponsored by the Society for Healthcare Epidemiology of America (SHEA) and is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise. The list of endorsing and supporting organizations is presented in the introduction to the 2014 updates

    The Principles of Campus Conception: A Spatial and Organizational Genealogy.What knowledge Can We Use from a Historical Study in Order to Analyse the Design Processes of a New Campus?

    Full text link
    International audienceThis chapter participates to the interest of scholars concerning the relationship between spatial structure and organisational practice. Most researches analyse this relationship through built-up spaces and few studies are focusing on design phase. The study of design processes – organisational and spatial – raises methodological challenges and interrogate how the relationship between these processes could be analysed. In order to discuss the nature of the relationship between both designs: organisational and spatial, this contribution relies on an analysis of the conception processes of a campus.The hypothesis is that a genealogical approach of the history of campus architecture could reveal some specific properties of the campus and could generate a tool – an analytical framework – in order to explore the campus design project processes

    JWST reveals a possible z∼11z \sim 11 galaxy merger in triply-lensed MACS0647−-JD

    Get PDF
    MACS0647−-JD is a triply-lensed z∼11z\sim11 galaxy originally discovered with the Hubble Space Telescope. Here we report new JWST imaging, which clearly resolves MACS0647−-JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. Both are very small, with stellar masses ∼108 M⊙\sim10^8\,M_\odot and radii r<100 pcr<100\,\rm pc. The brighter larger component "A" is intrinsically very blue (β∼−2.6\beta\sim-2.6), likely due to very recent star formation and no dust, and is spatially extended with an effective radius ∼70 pc\sim70\,\rm pc. The smaller component "B" appears redder (β∼−2\beta\sim-2), likely because it is older (100−200 Myr100-200\,\rm Myr) with mild dust extinction (AV∼0.1 magA_V\sim0.1\,\rm mag), and a smaller radius ∼20 pc\sim20\,\rm pc. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be out of phase. With an estimated stellar mass ratio of roughly 2:1 and physical projected separation ∼400 pc\sim400\,\rm pc, we may be witnessing a galaxy merger 400 million years after the Big Bang. We also identify a candidate companion galaxy C ∼3 kpc\sim3\,{\rm kpc} away, likely destined to merge with galaxies A and B. The combined light from galaxies A+B is magnified by factors of ∼\sim8, 5, and 2 in three lensed images JD1, 2, and 3 with F356W fluxes ∼322\sim322, 203203, 86 nJy86\,\rm nJy (AB mag 25.1, 25.6, 26.6). MACS0647−-JD is significantly brighter than other galaxies recently discovered at similar redshifts with JWST. Without magnification, it would have AB mag 27.3 (MUV=−20.4M_{UV}=-20.4). With a high confidence level, we obtain a photometric redshift of z=10.6±0.3z=10.6\pm0.3 based on photometry measured in 6 NIRCam filters spanning 1−5μm1-5\rm\mu m, out to 4300 A˚4300\,\r{A} rest-frame. JWST NIRSpec observations planned for January 2023 will deliver a spectroscopic redshift and a more detailed study of the physical properties of MACS0647−-JD.Comment: 27 pages, 14 figures, submitted to Natur

    Actin Assembly at Model-Supported Lipid Bilayers

    Get PDF
    We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of fluid-phase lipid bilayers, the actin adsorbs to form a uniform two-dimensional layer with complete surface coverage whereas gel-phase bilayers induce a network of randomly oriented actin filaments, of lower coverage. Reducing the pH increased the polymerization rate, the number of nucleation events, and the total coverage of actin. A model of the adsorption/diffusion process is developed to provide a description of the experimental data and shows that, in the case of fluid-phase bilayers, polymerization arises equally due to the adsorption and diffusion of surface-bound monomers and the addition of monomers directly from the solution phase. In contrast, in the case of gel-phase bilayers, polymerization is dominated by the addition of monomers from solution. In both cases, the filaments are stable for long times even when the G-actin is removed from the supernatant—making this a practical approach for creating stable lipid-actin systems via self-assembly
    • …
    corecore