61,592 research outputs found

    Phonon-Assisted Gain in a Semiconductor Double Quantum Dot Maser

    Full text link
    We develop a microscopic model for the recently demonstrated double quantum dot (DQD) maser. In characterizing the gain of this device we find that, in addition to the direct stimulated emission of photons, there is a large contribution from the simultaneous emission of a photon and a phonon, i.e., the phonon sideband. We show that this phonon-assisted gain typically dominates the overall gain which leads to masing. Recent experimental data are well fit with our model.Comment: v1: 6 pgs, 2 figures; v2: 6 pgs, 3 figures, added Fig 2b and Fig. 3b, modified main text; v3: 6+ pgs, 3 figures, modified main tex

    Injection Locking of a Semiconductor Double Quantum Dot Micromaser

    Full text link
    Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models

    Threshold Dynamics of a Semiconductor Single Atom Maser

    Full text link
    We demonstrate a single-atom maser consisting of a semiconductor double quantum dot (DQD) that is embedded in a high quality factor microwave cavity. A finite bias drives the DQD out of equilibrium, resulting in sequential single electron tunneling and masing. We develop a dynamic tuning protocol that allows us to controllably increase the time-averaged repumping rate of the DQD at a fixed level detuning, and quantitatively study the transition through the masing threshold. We further examine the crossover from incoherent to coherent emission by measuring the photon statistics across the masing transition. The observed threshold behavior is in agreement with an existing single atom maser theory when small corrections from lead emission are taken into account

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead

    Double Quantum Dot Floquet Gain Medium

    Full text link
    Strongly driving a two-level quantum system with light leads to a ladder of Floquet states separated by the photon energy. Nanoscale quantum devices allow the interplay of confined electrons, phonons, and photons to be studied under strong driving conditions. Here we show that a single electron in a periodically driven DQD functions as a "Floquet gain medium," where population imbalances in the DQD Floquet quasi-energy levels lead to an intricate pattern of gain and loss features in the cavity response. We further measure a large intra-cavity photon number n_c in the absence of a cavity drive field, due to equilibration in the Floquet picture. Our device operates in the absence of a dc current -- one and the same electron is repeatedly driven to the excited state to generate population inversion. These results pave the way to future studies of non-classical light and thermalization of driven quantum systems

    Modified Bethe-Peierls boundary condition for ultracold atoms with Spin-Orbit coupling

    Full text link
    We show that the Bethe-Peierls (BP) boundary condition should be modified for ultracold atoms with spin-orbit (SO) coupling. Moreover, we derive a general form of the modified BP boundary condition, which is applicable to a system with arbitrary kind of SO coupling. In the modified BP condition, an anisotropic term appears and the inter-atomic scattering length is normally SO-coupling dependent. For the special system in the current experiments, however, it can be proved that the scattering length is SO-coupling independent, and takes the same value as in the case without SO coupling. Our result is helpful for the study of both few-body and many-body physics in SO-coupled ultracold gases.Comment: 8 pages, significant improvement is made in the current versio

    Influence of an Internal Magnetar on Supernova Remnant Expansion

    Full text link
    Most of the proposed associations between magnetars and supernova remnant suffer from age problems. Usually, supernova remnants ages are determined from an approximation of the Sedov-Taylor phase relation between radius and age, for a fixed energy of the explosion ~ 10^{51} erg. Those ages do not generally agree with the characteristic ages of the (proposed) associated magnetars. We show quantitatively that, by taking into account the energy injected on the supernova remnant by magnetar spin-down, a faster expansion results, improving matches between characteristic ages and supernova remnants ages. However, the magnetar velocities inferred from observations would inviabilize some associations. Since characteristic ages may not be good age estimators, their influence on the likelihood of the association may not be as important. In this work we present simple numerical simulations of supernova remnants expansion with internal magnetars, and apply it to the observed objects. A short initial spin period, thought to be important for the very generation of the magnetic field, is also relevant for the modified expansion of the remnant. We next analyze all proposed associations case-by-case, addressing the likelyhood of each one, according to this perspective. We consider a larger explosion energy and reasses the characteristic age issue, and conclude that about 50% of the associations can be true ones, provided SGRs and AXPs are magnetars.Comment: 30 pages, AAStex, 5 figures, format fixe
    corecore