16 research outputs found

    Microtubule-independent movement of the fission yeast nucleus

    Get PDF
    Movement of the cell nucleus typically involves the cytoskeleton and either polymerization-based pushing forces or motor-based pulling forces. In the fission yeast Schizosaccharomyces pombe, nuclear movement and positioning are thought to depend on microtubule polymerization-based pushing forces. Here, we describe a novel, microtubule-independent, form of nuclear movement in fission yeast. Microtubule-independent nuclear movement is directed towards growing cell tips, and it is strongest when the nucleus is close to a growing cell tip, and weakest when the nucleus is far from that tip. Microtubule-independent nuclear movement requires actin cables but does not depend on actin polymerization-based pushing or myosin V-based pulling forces. The vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) Scs2 and Scs22, which are critical for endoplasmic reticulum–plasma membrane contact sites in fission yeast, are also required for microtubule-independent nuclear movement. We also find that in cells in which microtubule-based pushing forces are present, disruption of actin cables leads to increased fluctuations in interphase nuclear positioning and subsequent altered septation. Our results suggest two non-exclusive mechanisms for microtubule-independent nuclear movement, which may help illuminate aspects of nuclear positioning in other cells

    Fission yeast NDR/LATS kinase Orb6 regulates exocytosis via phosphorylation of exocyst complex

    Get PDF
    Summary: NDR/LATS kinases regulate multiple aspects of cell polarity and morphogenesis from yeast to mammals. Fission yeast NDR/LATS kinase Orb6 has been proposed to control cell polarity by regulating the Cdc42 guanine nucleotide exchange factor Gef1. Here, we show that Orb6 regulates polarity largely independently of Gef1 and that Orb6 positively regulates exocytosis. Through Orb6 inhibition in vivo and quantitative global phosphoproteomics, we identify Orb6 targets, including proteins involved in membrane trafficking. We confirm Sec3 and Sec5, conserved components of the exocyst complex, as substrates of Orb6 both in vivo and in vitro, and we show that Orb6 kinase activity is important for exocyst localization to cell tips and for exocyst activity during septum dissolution after cytokinesis. We further find that Orb6 phosphorylation of Sec3 contributes to exocyst function in concert with exocyst protein Exo70. We propose that Orb6 contributes to polarized growth by regulating membrane trafficking at multiple levels. : NDR/LATS kinases are known primarily for their role in controlling cell and tissue proliferation and morphogenesis, e.g., via regulation of transcription in the Hippo pathway. Using fission yeast S. pombe as a model system, Tay et al. show that the NDR/LATS kinase Orb6 is a major regulator of exocytosis. Keywords: Orb6, NDR/LATS kinase, Cdc42, phosphoproteomics, exocytosis, exocyst, Sec3, phosphorylation, fission yeast, Schizosaccharomyces pomb

    The Analysis of homologous recombination pathways in Saccharomyces Cerevisiae

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The analysis of homologous recombination pathways in Saccharomyces Cerevisiae

    No full text
    Homologous recombination (HR) is essential for the repair of DNA doublestrand breaks (DSBs) and damaged replication forks. However, HR can also cause gross chromosomal rearrangements (GCRs) by producing crossovers (COs), resulting in the reciprocal exchange of sequences between non-sister chromatids. Therefore, HR-mediated GCRs are suppressed via the promotion of HR pathways that favour noncrossover (NCO) formation, such as the synthesis-dependent strand annealing (SDSA) and dissolution pathways, which are modulated by Mph1 and Sgs1 helicases, respectively. The mismatch repair (MMR) pathway is intricately associated with HR via its roles in repairing mismatches on heteroduplex DNA that can arise during HR and in preventing homeologous recombination. Using a plasmid break-repair assay, we have revealed a novel, MMR-independent role of MutSα in promoting the formation of a subset of COs that is specifically supressible by Mph1, during HR between two completely homologous sequences. In contrast, the MMR-dependent function of MutSα, together with Mph1 and Sgs1, was shown to be required for the suppression of CO formation during homeologous recombination. These data indicate that Mph1 can both antagonise and promote the functions of MutSα during DSB repair, depending on the levels of homology between the two recombining sequences.COs are generated by the resolution of Holliday junction (HJ) intermediates formed at the terminal stages of HR. Several S.cerevisiae proteins such as Yen1, Mus81, Slx1 and Rad1 have been implicated in HJ resolution. However, the in vivo roles of these proteins in HJ resolution remain to be confirmed. To directly and quantitatively monitor in vivo HJ resolution in S.cerevisiae, a transformation-based HJ resolution assay using a plasmid-borne HJ substrate has been developed. Using this system, we have demonstrated an in vivo HJ resolution function of Yen1, which acts redundantly with Mus81. Moreover, these redundant activities of Yen1 and Mus81 are essential for survival during replication stress, but are dispensable for DSB repair. An Slx4 and Rad1-dependent in vivo HJ resolution activity was also observed in the absence of Yen1 and Mus81 that was suppressed by presence of Slx1. Models describing how the nucleases interact to process HJs in vivo will be discussed.</p

    Mph1 requires mismatch repair-independent and -dependent functions of MutSα to regulate crossover formation during homologous recombination repair

    Get PDF
    In budding yeast the DNA helicase Mph1 prevents genome rearrangements during ectopic homologous recombination (HR) by suppressing the formation of crossovers (COs). Here we show that during ectopic HR repair, the anti-CO function of Mph1 is intricately associated with the mismatch repair (MMR) factor, MutSα. In particular, during HR repair using a completely homologous substrate, we reveal an MMR-independent function of MutSα in generating COs that is specifically antagonized by Mph1, but not Sgs1. In contrast, both Mph1 and MutSα are required to efficiently suppress COs in the presence of a homeologous substrate. Mph1 acts redundantly with Sgs1 in this respect since mph1δ sgs1δ double mutant cells pheno-copy MutSα mutants and completely fail to discriminate homologous and homeologous sequences during HR repair. However, this defect of mph1δ sgs1δ cells is not due to an inability to carry out MMR but rather is accompanied by elevated levels of gene conversion (GC) and bi-directional GC tracts specifically in non-crossover products. Models describing how Mph1, MutSα and Sgs1 act in concert to suppress genome rearrangements during ectopic HR repair are discussed

    Mph1 requires mismatch repair-independent and -dependent functions of MutSα to regulate crossover formation during homologous recombination repair

    No full text
    In budding yeast the DNA helicase Mph1 prevents genome rearrangements during ectopic homologous recombination (HR) by suppressing the formation of crossovers (COs). Here we show that during ectopic HR repair, the anti-CO function of Mph1 is intricately associated with the mismatch repair (MMR) factor, MutSα. In particular, during HR repair using a completely homologous substrate, we reveal an MMR-independent function of MutSα in generating COs that is specifically antagonized by Mph1, but not Sgs1. In contrast, both Mph1 and MutSα are required to efficiently suppress COs in the presence of a homeologous substrate. Mph1 acts redundantly with Sgs1 in this respect since mph1Δ sgs1Δ double mutant cells pheno-copy MutSα mutants and completely fail to discriminate homologous and homeologous sequences during HR repair. However, this defect of mph1Δ sgs1Δ cells is not due to an inability to carry out MMR but rather is accompanied by elevated levels of gene conversion (GC) and bi-directional GC tracts specifically in non-crossover products. Models describing how Mph1, MutSα and Sgs1 act in concert to suppress genome rearrangements during ectopic HR repair are discussed

    Mutation of a conserved residue enhances sensitivity of analogue sensitized kinases to generate a novel approach for mitotic studies in fission yeast

    No full text
    The chemical genetic strategy in which mutational enlargement of the ATP-binding site sensitises of a protein kinase to bulky ATP analogues has proved to be an elegant tool for the generation of conditional analogue-sensitive kinase alleles in a variety of model organisms. Here, we describe a novel substitution mutation in the kinase domain that can enhance the sensitivity of analogue-sensitive kinases. Substitution of a methionine residue to phenylalanine in the +2 position after HRDLKxxN motif of the subdomain VIb within the kinase domain markedly increased the sensitivities of the analogue-sensitive kinases to ATP analogues in three out of five S. pombe kinases (i.e. Plo1, Orb5 and Wee1) that harbor this conserved methionine residue. Kinome alignment established that a methionine residue is found at this site in 5–9% of kinases in key model organisms, suggesting that a broader application of this structural modification may enhance ATP analogue sensitivity of analogue-sensitive kinases in future studies. We also show that the enhanced sensitivity of the wee1.as8 allele in a cdc25.22 background can be exploited to generate highly synchronised mitotic and S phase progression at 36°C. Proof-of-principle experiments show how this novel synchronisation technique will prove of great use in the interrogation of the mitotic or S-phase functions through temperature sensitivity mutation of molecules of interest in fission yeast
    corecore