3 research outputs found
Developing a SARS-CoV-2 Antigen Test Using Engineered Affinity Proteins
The ongoing COVID-19 pandemic has clearly established how vital rapid, widely accessible diagnostic tests are in controlling infectious diseases and how difficult and slow it is to scale existing technologies. Here, we demonstrate the use of the rapid affinity pair identification via directed selection (RAPIDS) method to discover multiple affinity pairs for SARS-CoV-2 nucleocapsid protein (N-protein), a biomarker of COVID-19, from in vitro libraries in 10 weeks. The pair with the highest biomarker sensitivity was then integrated into a 10-minute, vertical-flow cellulose paper test. Notably, the as-identified affinity proteins were compatible with a roll-to-roll printing process for large-scale manufacturing of tests. The test achieved 40 pM and 80 pM limits of detection in 1×PBS (mock swab) and saliva matrices spiked with cell-culture generated SARS-CoV-2 viruses and is also capable of detection of N-protein from characterized clinical swab samples. Hence, this work paves the way towards the mass production of cellulose paper-based assays which can address the shortages faced due to dependence on nitrocellulose and current manufacturing techniques. Further, the results reported herein indicate the promise of RAPIDS and engineered binder proteins for the timely and flexible development of clinically relevant diagnostic tests in response to emerging infectious diseases
A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies
10.1038/s43856-021-00045-9COMMUNICATIONS MEDICINE1
Direct capture of neutralized RBD enables rapid point-of-care assessment of SARS-CoV-2 neutralizing antibody titer
Neutralizing antibody (NAb) titer is a key biomarker of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but point-of-care methods for assessing NAb titer are not widely available. Here, we present a lateral flow assay that captures SARS-CoV-2 receptor-binding domain (RBD) that has been neutralized from binding angiotensin-converting enzyme 2 (ACE2). Quantification of neutralized RBD in this assay correlates with NAb titer from vaccinated and convalescent patients. This methodology demonstrated superior performance in assessing NAb titer compared with either measurement of total anti-spike immunoglobulin G titer or quantification of the absolute reduction in binding between ACE2 and RBD. Our testing platform has the potential for mass deployment to aid in determining at population scale the degree of protective immunity individuals may have following SARS-CoV-2 vaccination or infection and can enable simple at-home assessment of NAb titer