41 research outputs found

    Inflammasome Inhibition as a Pathogenic Stealth Mechanism

    Get PDF
    The activation of inflammasomes containing NBD-LRR (NLRs) or non-NLRs is critical for effective host defense against microbial pathogens. Recent discoveries have uncovered a plethora of pathogenic strategies to inhibit inflammasome-mediated processing of IL-1β and IL-18. We review recent evidence for viral and bacterial manipulation of the inflammasome ranging from perturbation of caspase-1 activation to targeting of specific inflammasome components

    Cross-regulation between the IL-1β/IL-18 processing inflammasome and other inflammatory cytokines

    Get PDF
    The inflammasome-forming NLRs are well characterized members of a protein complex mediating the activation of caspase-1 and the cleavage of pro-IL-1β and pro-IL-18 into their active, secreted forms. New data suggest that components of the inflammasome cascade may have roles in influencing inflammasome-independent pathways of cytokine production. These influences on other immune cytokine pathways are complemented by data suggesting that non-inflammasome cytokines can influence the activation of the inflammasome, either directly or by influencing transcription of inflammasome components. The crosstalk between these cytokine cascades may lead to increased abilities for the cell to respond to diverse pathogen threats

    HIV-1 Infection Induces Interleukin-1β Production via TLR8 Protein-dependent and NLRP3 Inflammasome Mechanisms in Human Monocytes

    Get PDF
    The induction of inflammatory cytokines such as IL-1β is associated with the progression of human immunodeficiency virus, type 1 (HIV-1) disease or AIDS. Unlike most inflammatory cytokines that are regulated by NF-κB at the transcriptional level, production of mature IL-1β also depends on inflammasome activation. The mechanism by which HIV-1 induces pro-IL-1β expression and activates inflammasomes to cleave pro-IL-1β into its bioactive form is not clearly defined. We report here that HIV-1 infection in human monocytes efficiently induced IL-1β expression and inflammasome activation. Toll-like receptor 8 (TLR8) was required for inducing pro-IL-1β expression, whereas the NLRP3 inflammasome was required for IL-1β maturation and release. Furthermore, the lysosomal protease cathepsin B and HIV-1 induced production of reactive oxygen species were critical for HIV-induced inflammasome activation and IL-1β production. HIV-1 entry, reverse transcription, and integration were all required for both pro-IL-1β expression and inflammasome activation. Finally, we show that HIV-1-derived RNA was sufficient to induce both pro-IL-1β expression and inflammasome activation. We conclude that HIV-1 infection induced the expression of pro-IL-1β via TLR8-mediated mechanisms and activated caspase-1 through the NLRP3 inflammasome to cleave pro-IL-1β into bioactive IL-1β. These findings help to elucidate mechanisms of HIV-1 disease progression and identify novel targets for treating HIV-1 induced inflammation and immune activation

    Criteria for effective design, construction, and gene knockdown by shRNA vectors

    Get PDF
    BACKGROUND: RNA interference (RNAi) technology is a powerful methodology recently developed for the specific knockdown of targeted genes. RNAi is most commonly achieved either transiently by transfection of small interfering (si) RNA oligonucleotides, or stably using short hairpin (sh) RNA expressed from a DNA vector or virus. Much controversy has surrounded the development of rules for the design of effective siRNA oligonucleotides; and whether these rules apply to shRNA is not well characterized. RESULTS: To determine whether published algorithms for siRNA oligonucleotide design apply to shRNA, we constructed 27 shRNAs from 11 human genes expressed stably using retroviral vectors. We demonstrate an efficient method for preparing wild-type and mutant control shRNA vectors simultaneously using oligonucleotide hybrids. We show that sequencing through shRNA vectors can be problematic due to the intrinsic secondary structure of the hairpin, and we determine a strategy for effective sequencing by using a combination of modified BigDye chemistries and DNA relaxing agents. The efficacy of knockdown for the 27 shRNA vectors was evaluated against six published algorithms for siRNA oligonucleotide design. Our results show that none of the scoring algorithms can explain a significant percentage of variance in shRNA knockdown efficacy as assessed by linear regression analysis or ROC curve analysis. Application of a modification based on the stability of the 6 central bases of each shRNA provides fair-to-good predictions of knockdown efficacy for three of the algorithms. Analysis of an independent set of data from 38 shRNAs pooled from previous publications confirms these findings. CONCLUSION: The use of mixed oligonucleotide pairs provides a time and cost efficient method of producing wild type and mutant control shRNA vectors. The addition to sequencing reactions of a combination of mixed dITP/dGTP chemistries and DNA relaxing agents enables read through the intrinsic secondary structure of problematic shRNA vectors. Six published algorithms for siRNA oligonucleotide design that were tested in this study show little or no efficacy at predicting shRNA knockdown outcome. However, application of a modification based on the central shRNA stability should provide a useful improvement to the design of effective shRNA vectors

    Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription

    Get PDF
    Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1β) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAFI48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells

    NLRP3 (NALP3, Cryopyrin) Facilitates In Vivo Caspase-1 Activation, Necrosis, and HMGB1 Release via Inflammasome-Dependent and -Independent Pathways

    Get PDF
    Bacterial infection elicits a range of beneficial as well as detrimental host inflammatory responses. Key among these responses are macrophage/monocyte necrosis, release of the pro-inflammatory factor high-mobility group box 1 protein (HMGB1), and induction of the cytokine IL-1. While the control of IL-1β has been well-studied, processes that control macrophage cell death and HMGB-1 release in animals are poorly understood. This study utilizes Klebsiella pneumonia as a model organism since it elicits all three responses in vivo. The regulation of these responses is studied in the context of the inflammasome components, NLRP3 and ASC, which are important for caspase-1 activation and IL-1β release. Using a pulmonary infection model that reflects human infection, we show that K. pneumonia-induced mouse macrophage necrosis, HMGB-1 and IL-1β release are dependent on NLRP3 and ASC. K. pneumoniae infection of mice lacking Nlrp3 results in decreased lung inflammation and reduced survival relative to control indicating the overall protective role of this gene. Macrophage/monocyte necrosis and HMGB1 release are controlled independently of caspase-1 suggesting that the former two responses are separable from inflammasome-associated functions. These results provide critical in vivo validation that the physiologic role of NLRP3 and ASC is not limited to inflammasome formation

    The NLRP3 Inflammasome Mediates In Vivo Innate Immunity to Influenza A Virus through Recognition of Viral RNA

    Get PDF
    NLR genes mediate host immunity to various pathogenic stimuli. However, in vivo evidence for NLR involvement in viral sensing has not been widely investigated and remains controversial. As an ultimate test of the physiologic role of NLRP3 during RNA viral infection, this work explores the in vivo role of NLRP3 inflammasome components during influenza virus infection. Mice lacking Nlrp3, ASC, or Caspase-1, but not Nlrc4, exhibit dramatically increased mortality but reduced immune response following influenza virus exposure. Utilizing analogs of dsRNA (poly(I:C)) and ssRNA (ssRNA40), we demonstrate that NLRP3-mediated response can be activated by RNA species. Mechanistically, NLRP3 inflammasome activation by influenza virus is dependent upon lysosomal maturation and reactive oxygen species. Inhibition of ROS induction eliminated IL-1β production in animals during influenza infection. Together, these data place the NLRP3 inflammasome as an essential component in host defense against influenza infection through the sensing of viral RNA

    Porphyromonas gingivalis Mediates Inflammasome Repression in Polymicrobial Cultures through a Novel Mechanism Involving Reduced Endocytosis

    Get PDF
    The interleukin (IL)-1β-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1β processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1β processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis

    Cutting Edge: NLRC5-Dependent Activation of the Inflammasome

    Get PDF
    The nucleotide-binding domain (NBD) leucine rich repeat (LRR) containing proteins, NLRs, are intracellular sensors of PAMPs and DAMPs. A subgroup of NLRs can form inflammasome complexes, which facilitate the maturation of pro-caspase-1 to caspase-1, leading to IL-1β and IL-18 cleavage and secretion. NLRC5 is predominantly expressed in hematopoetic cells and has not been studied for inflammasome function. RNAi-mediated knockdown of NLRC5 nearly eliminated caspase-1, IL-1β and IL-18 processing in response to bacterial infection, PAMPs and DAMPs. This was confirmed in primary human monocytic cells. NLRC5 together with procaspase-1, pro-IL-1β and the inflammasome adaptor, ASC, reconstituted inflammasome activity which showed cooperativity with NLPR3. The range of pathogens that activate NLRC5 inflammasome overlaps with those that activate NLRP3. Furthermore, NLRC5 biochemically associates with NLRP3 in an NBD-dependent but LRR-inhibitory fashion. These results invoke a model where NLRC5 interacts with NLRP3 to cooperatively activate the inflammasome

    Microbial Pathogen-Induced Necrotic Cell Death Mediated by the Inflammasome Components CIAS1/Cryopyrin/NLRP3 and ASC

    Get PDF
    Cryopyrin (CIAS1, NLRP3) and ASC are components of the inflammasome, a multiprotein complex required for caspase-1 activation and cytokine IL-1βproduction. CIAS1 mutations underlie autoinflammation characterized by excessive IL-1β secretion. Disease-associated cryopyrin also causes a program of necrosis-like cell death in macrophages, the mechanistic details of which are unknown. We find that patient monocytes carrying disease-associated CIAS1 mutations exhibit excessive necrosis-like death by a process dependent on ASC and cathepsin B, resulting in spillage of the proinflammatory mediator HMGB1. Shigella flexneri infection also causes cryopyrin-dependent macrophage necrosis with features similar to the death caused by mutant CIAS1. This necrotic death is independent of caspase-1 and IL-1β, and thus independent of the inflammasome. Furthermore, necrosis of primary macrophages requires the presence of Shigella virulence genes. While similar proteins mediate pathogen-induced cell death in plants, this report identifies cryopyrin as an important host regulator of programmed pathogen-induced necrosis in animals, a process we term pyronecrosis
    corecore