8 research outputs found
Review of the Diagnosis and Treatment of Periodic Paralysis
Periodic paralyses (PPs) are rare neuromuscular disorders caused by mutations in skeletal muscle sodium, calcium, and potassium channel genes. PPs include hypokalemic paralysis, hyperkalemic paralysis, and Andersen-Tawil syndrome. Common features of PP include autosomal dominant inheritance, onset typically in the first or second decades, episodic attacks of flaccid weakness, which are often triggered by diet or rest after exercise.
Diagnosis is based on the characteristic clinic presentation then confirmed by genetic testing. In the absence of an identified genetic mutation, documented low or high potassium levels during attacks or a decrement on long exercise testing support diagnosis.
The treatment approach should include both management of acute attacks and prevention of attacks. Treatments include behavioral interventions directed at avoidance of triggers, modification of potassium levels, diuretics, and carbonic anhydrase inhibitors
Longitudinal measures of RNA expression and disease activity in FSHD muscle biopsies
Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to the discovery of candidate therapeutics, and it is important to identify markers of disease activity to inform clinical trial design. For drugs that inhibit DUX4 expression, measuring DUX4 or DUX4-target gene expression might be an interim measure of drug activity; however, only a subset of FHSD muscle biopsies shows evidence of DUX4 expression. Our prior study showed that MRI T2-STIR-positive muscles had a higher probability of showing DUX4 expression than muscles with normal MRI characteristics. In the current study, we performed a 1-year follow-up assessment of the same muscle with repeat MRI and muscle biopsy. There was little change in MRI characteristics over the 1-year period and, similar to the initial evaluation, MRI T2-STIR-postive muscles had a higher expression of DUX4-regulated genes, as well as genes associated with inflammation, extracellular matrix and cell cycle. Compared to the initial evaluation, overall the level of expression in these gene categories remained stable over the 1-year period; however, there was some variability for each individual muscle biopsied. The pooled data from both the initial and 1-year follow-up evaluations identified several FSHD subgroups based on gene expression, as well as a set of genes-composed of DUX4-target genes, inflammatory and immune genes and cell cycle control genes-that distinguished all of the FSHD samples from the controls. These candidate markers of disease activity need to be replicated in independent datasets and, if validated, may provide useful measures of disease progression and response to therapy.Functional Genomics of Muscle, Nerve and Brain Disorder
Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells
Functional Genomics of Muscle, Nerve and Brain Disorder
Randomized phase 2 study of ACE-083, a muscle-promoting agent, in facioscapulohumeral muscular dystrophy
Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive muscular dystrophy without approved therapies. In this study we evaluated whether locally acting ACE-083 could safely increase muscle volume and improve functional outcomes in adults with FSHD. Participants were at least 18 years old and had FSHD1/FSHD2. Part 1 was open label, ascending dose, assessing safety and tolerability (primary objective). Part 2 was randomized, double-blind for 6 months, evaluating ACE-083240 mg/muscle vs placebo injected bilaterally every 3 weeks in the biceps brachii (BB) or tibialis anterior (TA) muscles, followed by 6 months of open label. Magnetic resonance imaging measures included total muscle volume (TMV; primary objective), fat fraction (FF), and contractile muscle volume (CMV). Functional measures included 6-minute walk test, 10-meter walk/run, and 4-stair climb (TA group), and performance of upper limb midlevel/elbow score (BB group). Strength, patient-reported outcomes (PROs), and safety were also evaluated. Parts 1 and 2 enrolled 37 and 58 participants, respectively. Among 55 participants evaluable in Part 2, the least-squares mean (90% confidence interval, analysis of covariance) treatment difference for TMV was 16.4% (9.8%-23.0%) in the BB group (P <.0001) and 9.5% (3.2%-15.9%) in the TA group (P =.01). CMV increased significantly in the BB and TA groups and FF decreased in the TA group. There were no consistent improvements in functional or PRO measures in either group. The most common adverse events were mild or moderate injection-site reactions. Significant increases in TMV with ACE-083 vs placebo did not result in consistent functional or PRO improvements with up to 12 months of treatment