4,142 research outputs found

    Quark-Hadron Phase Transitions in Viscous Early Universe

    Get PDF
    Based on hot big bang theory, the cosmological matter is conjectured to undergo QCD phase transition(s) to hadrons, when the universe was about 110μ1-10 \mus old. In the present work, we study the quark-hadron phase transition, by taking into account the effect of the bulk viscosity. We analyze the evolution of the quantities relevant for the physical description of the early universe, namely, the energy density ρ\rho, temperature TT, Hubble parameter HH and scale factor aa before, during and after the phase transition. To study the cosmological dynamics and the time evolution we use both analytical and numerical methods. By assuming that the phase transition may be described by an effective nucleation theory (prompt {\it first-order} phase transition), we also consider the case where the universe evolved through a mixed phase with a small initial supercooling and monotonically growing hadronic bubbles. The numerical estimation of the cosmological parameters, aa and HH for instance, makes it clear that the time evolution varies from phase to phase. As the QCD era turns to be fairly accessible in the high-energy experiments and the lattice QCD simulations, the QCD equation of state is very well defined. In light of this, we introduce a systematic study of the {\it cross-over} quark-hadron phase transition and an estimation for the time evolution of Hubble parameter.Comment: 27 pages, 17 figures, revtex style (To appear in Phys. Rev. D). arXiv admin note: text overlap with arXiv:gr-qc/040404

    Constant Trace Anomaly as a Universal Condition for the Chemical Freeze-Out

    Full text link
    Finding out universal conditions describing the freeze-out parameters was a subject of various phenomenological studies. In the present work, we introduce a new condition based on constant trace anomaly (or interaction measure) calculated in the hadron resonance gas (HRG) model. Various extensions to the {\it ideal} HRG which are conjectured to take into consideration different types of interactions have been analysed. When comparing HRG thermodynamics to that of lattice quantum chromodynamics, we conclude that the hard-core radii are practically irrelevant, especially when HRG includes all resonances with masses less than 2 2~GeV. It is found that the constant trace anomaly (or interaction measure) agrees well with most of previous conditions.Comment: 15 pages, 3 figures with 4 eps graph

    Event-by-Event Fluctuations of Particle Ratios in Heavy-Ion Collisions

    Full text link
    We study event-by-event dynamical fluctuations of various particle ratios at different energies. We assume that particle production in final state is due to chemical equilibrium processes. We compare results from resonance gas model with available experimental data. At SPS energies, the model can very well reproduce the experimentally measured fluctuations. We make predictions for dynamical fluctuations of strangeness and non-strangeness particle ratios. We found that the energy-dependence is non-monotonic. Furthermore, we found that fluctuations strongly depend on particle ratios.Comment: 6 pages, 2 figure, 1 tabl
    corecore