95 research outputs found

    The interplay between neoantigens and immune cells in sarcomas treated with checkpoint inhibition

    Get PDF
    IntroductionSarcomas are comprised of diverse bone and connective tissue tumors with few effective therapeutic options for locally advanced unresectable and/or metastatic disease. Recent advances in immunotherapy, in particular immune checkpoint inhibition (ICI), have shown promising outcomes in several cancer indications. Unfortunately, ICI therapy has provided only modest clinical responses and seems moderately effective in a subset of the diverse subtypes.MethodsTo explore the immune parameters governing ICI therapy resistance or immune escape, we performed whole exome sequencing (WES) on tumors and their matched normal blood, in addition to RNA-seq from tumors of 31 sarcoma patients treated with pembrolizumab. We used advanced computational methods to investigate key immune properties, such as neoantigens and immune cell composition in the tumor microenvironment (TME).ResultsA multifactorial analysis suggested that expression of high quality neoantigens in the context of specific immune cells in the TME are key prognostic markers of progression-free survival (PFS). The presence of several types of immune cells, including T cells, B cells and macrophages, in the TME were associated with improved PFS. Importantly, we also found the presence of both CD8+ T cells and neoantigens together was associated with improved survival compared to the presence of CD8+ T cells or neoantigens alone. Interestingly, this trend was not identified with the combined presence of CD8+ T cells and TMB; suggesting that a combined CD8+ T cell and neoantigen effect on PFS was important.DiscussionThe outcome of this study may inform future trials that may lead to improved outcomes for sarcoma patients treated with ICI

    Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in Braf-mutated melanoma

    Get PDF
    Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (\u3e4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten−/−). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies

    High-dose interleukin-2 (HD IL-2) for advanced melanoma: a single center experience from the University of Pittsburgh Cancer Institute

    No full text
    Abstract Background Durable remissions are observed in a fraction of metastatic melanoma patients treated with high-dose interleukin-2 (HD IL-2). Early studies reported overall (OR) and complete response (CR) rates of 16% and 8% respectively. Toxicity limited use to specialized centers with standardized protocols. We report on 243 patients treated at the University of Pittsburgh in a non-intensive care unit (ICU) oncology specialty setting. Methods Clinical and radiological data were collected on 243 patients treated between 1992 and 2015. Each HD IL-2 cycle was given over 5 days, cycles were repeated after 9 days and courses (2 cycles) were repeated every 6–9 weeks in patients with stable or responding disease, for up to 3 courses total. Influence of baseline characteristics on outcomes was assessed using Kaplan-Meier estimates and Cox proportional hazards analysis. Results Two hundred forty-three patients received 692 cycles (5270 doses) between 1992 and 2015. Two hundred thirty-seven patients were evaluable for response: OR rate 18.1% with CR rate 8.0%. Median overall survival (OS) 9.6 months in the entire cohort but 64.9 months in responders. Median number of cycles delivered was 2,and median number of doses per cycle was 8. Toxicity was consistent with prior reports. HD IL-2 required ICU transfers in 11 patients and 1 death was attributed to HD IL-2. Pre-treatment lactate dehydrogenase (LDH) levels correlated significantly with progression-free survival [1-2× upper limit normal (ULN) HR 1.95; >2× ULN HR 2.32] and overall survival (1-2× ULN HR 1.67; >2× ULN 2.49). Response to HD IL-2 and site of metastatic disease also correlated significantly with progression-free and overall survival. Conclusions In this large series of patients spanning more than two decades, OR/CR rates with HD IL-2 were 18.1%/8.0% respectively. Toxicity data was consistent with prior reports. Pre-treatment LDH values and site(s) of metastatic disease may be useful markers to select patients at greater likelihood of benefit to HD IL-2 therapy

    Pyrexia in patients treated with dabrafenib plus trametinib across clinical trials in BRAF-mutant cancers

    Full text link
    Background: Dabrafenib plus trametinib has demonstrated clinical benefit across multiple BRAF-mutant tumours, leading to approval for resected stage III and metastatic melanoma, non-small-cell lung cancer (NSCLC) and anaplastic thyroid cancer. Pyrexia is a common adverse event in patients treated with dabrafenib plus trametinib. Here, we characterise the incidence, patterns and management of pyrexia in patients receiving dabrafenib plus trametinib in clinical trials. Methods: Patients (N = 1076) included in the analysis received dabrafenib plus trametinib in the following clinical trials: phase II registration trial in advanced NSCLC (N = 82), phase III COMBI-AD study in resectable stage III melanoma (N = 435) and phase III COMBI-d and COMBI-v studies in unresectable or metastatic melanoma (N = 209 and N = 350, respectively). Results: Among the 1076 patients enrolled in the clinical trials, 61.3% developed pyrexia, 5.7% developed grade 3/4 pyrexia and 15.6% developed a protocol-defined serious pyrexia event. Among the 660 patients with pyrexia, 33.0% had 1 occurrence, 19.8% had 2 occurrences and 47.1% had ≥3 occurrences. The incidence of pyrexia was highest early in treatment and decreased with time on treatment. Temporary dose interruption of dabrafenib or trametinib was the most common and effective management strategy. Conclusions: Pyrexia is the most common adverse event associated with dabrafenib plus trametinib but is manageable with dose interruption. Trial registration: ClinicalTrials.gov (Phase II NSCLC, NCT01336634; COMBI-AD, NCT01682083; COMBI-d, NCT01584648; COMBI-v, NCT01597908). Keywords: Adverse event; BRAF V600–mutant melanoma; BRAF inhibitor; MEK inhibitor; Pyrexia
    • …
    corecore