9 research outputs found

    Phase II Study of BEZ235 versus Everolimus in Patients with Mammalian Target of Rapamycin Inhibitor‐Naïve Advanced Pancreatic Neuroendocrine Tumors

    Get PDF
    BACKGROUND: This phase II study investigated whether targeting the phosphatidylinositol 3‐kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway via PI3K, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) inhibition using BEZ235 may be more effective than mTORC1 inhibition with everolimus in patients with advanced pancreatic neuroendocrine tumors (pNET) who are naïve to mTOR inhibitor therapy. METHODS: Patients with advanced pNET were randomized (1:1) to oral BEZ235 400 mg twice daily or oral everolimus 10 mg once daily on a continuous dosing schedule. The primary endpoint was progression‐free survival (PFS). Secondary endpoints included safety, overall response rate (ORR), overall survival (OS), and time to treatment failure. RESULTS: Enrollment in this study was terminated early (62 enrolled of the 140 planned). The median PFS was 8.2 months (95% confidence interval [CI]: 5.3 to not evaluable [NE]) with BEZ235 versus 10.8 months (95% CI: 8.1–NE) with everolimus (hazard ratio 1.53; 95% CI: 0.72–3.25). The most commonly reported all‐grade adverse events (>50% of patients regardless of study treatment relationship) with BEZ235 were diarrhea (90.3%), stomatitis (74.2%), and nausea (54.8%). CONCLUSION: BEZ235 treatment in mTOR inhibitor‐naïve patients with advanced pNET did not demonstrate increased efficacy compared with everolimus and may be associated with a poorer tolerability profile

    PI3K inhibitors as new cancer therapeutics: implications for clinical trial design

    No full text
    Cristian Massacesi,1 Emmanuelle Di Tomaso,2 Patrick Urban,3 Caroline Germa,4 Cornelia Quadt,5 Lucia Trandafir,1 Paola Aimone,3 Nathalie Fretault,1 Bharani Dharan,4 Ranjana Tavorath,4 Samit Hirawat4 1Novartis Oncology, Paris, France; 2Novartis Institutes for BioMedical Research Inc, Cambridge, MA, USA; 3Novartis Pharma AG, Basel, Switzerland; 4Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 5Novartis Pharmaceuticals KK, Tokyo, Japan Abstract: The PI3K–AKT–mTOR pathway is frequently activated in cancer. PI3K inhibitors, including the pan-PI3K inhibitor buparlisib (BKM120) and the PI3Kα-selective inhibitor alpelisib (BYL719), currently in clinical development by Novartis Oncology, may therefore be effective as anticancer agents. Early clinical studies with PI3K inhibitors have demonstrated preliminary antitumor activity and acceptable safety profiles. However, a number of unanswered questions regarding PI3K inhibition in cancer remain, including: what is the best approach for different tumor types, and which biomarkers will accurately identify the patient populations most likely to benefit from specific PI3K inhibitors? This review summarizes the strategies being employed by Novartis Oncology to help maximize the benefits of clinical studies with buparlisib and alpelisib, including stratification according to PI3K pathway activation status, selective enrollment/target enrichment (where patients with PI3K pathway-activated tumors are specifically recruited), nonselective enrollment with mandatory tissue collection, and enrollment of patients who have progressed on previous targeted agents, such as mTOR inhibitors or endocrine therapy. An overview of Novartis-sponsored and Novartis-supported trials that are utilizing these approaches in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme, is also described. Keywords: PI3K–AKT–mTOR pathway, patient selection, biomarkers, PI3K inhibitors, clinical trial desig

    The Role of Tachykinins and the Tachykinin NK1 Receptor in Nausea and Emesis

    No full text
    corecore