159 research outputs found

    Experimental Evaluation of a SIP-Based Home Gateway with Multiple Wireless Interfaces for Domotics Systems

    Get PDF
    In modern houses, the presence of sensors and actuators is increasing, whilecommunication servicesandentertainment systemshad long since settled into everyday life. The utilization of wireless communication technologies, such as ZigBee, Wi-Fi, and Bluetooth, is attractive because of their short installation times and low costs. The research is moving towards the integration of the various home appliances and devices into a single domotics system, able to exploit the cooperation among the diverse subsystems and offer the end-user a single multiservice platform. In this scenario, the paper presents the experimental evaluation of a domotics framework centered on a SIP-based home gateway (SHG). While SIP is used to build a common control plane, the SHG is in charge of translating the user commands from and to the specific domotics languages. The analysis has been devoted to assess both the performance of the SHG software framework and the negative effects produced by the simultaneous interference among the three widespread wireless technologies

    The impact of the access point power model on the energy-efficient management of infrastructured wireless LANs

    Get PDF
    The reduction of the energy footprint of large and mid-sized IEEE 802.11 access networks is gaining momentum. When operating at the network management level, the availability of an accurate power model of the APs becomes of paramount importance, because different detail levels have a non-negligible impact on the performance of the optimisation algorithms. The literature is plentiful of AP power models, and choosing the right one is not an easy task. In this paper we report the outcome of a thorough study on the impact that various inflections of the AP power model have when minimising the energy consumption of the infrastructure side of an enterprise wireless LAN. Our study, performed on several network scenarios and for various device energy profiles, reveals that simple one- and two-component models can provide excellent results in practically all cases. Conversely, employing accurate and detailed power models rarely offers substantial advantages in terms of power reduction, but, on the other hand, makes the solving algorithms much slower to execute

    An Experimental Cross-Layer Approach to Improve the Vertical Handover Procedure in Heterogeneous Wireless Networks

    Get PDF
    Users of next generation wireless devices will be likely to move across a heterogeneous network environment. This will give them the possibility to always exploit the best connection to the global Internet. In order to keep a seamless connection, the handover between different access technologies, also known as vertical handover, must be as smooth as possible. The current evolution of network architectures toward an all-IP core favours the use of the Mobile IPv6 protocol to handle such handovers. However, this protocol still presents several drawbacks, mainly related to the assumption of static devices and wired connections. Hence we have designed and implemented a software module that exploits information from the lower layers (e.g. physical) to extend the capabilities of Mobile IPv6 to wireless environments. We have then evaluated both the plain Mobile IPv6 and our proposed implementation over an experimental testbed. The outcome of the assessment proves the effectiveness of our solution and reveals the possibility to perform a seamless vertical handover in heterogeneous wireless networks

    Optimal Access Point Power Management for Green IEEE 802.11 Networks

    Get PDF
    In this paper, we present an approach and an algorithm aimed at minimising the energy consumption of enterprise Wireless Local Area Networks (WLANs) during periods of low user activity. We act on two network management aspects: powering off some Access Points (APs), and choosing the level of transmission power of each AP. An efficient technique to allocate the user terminals to the various APs is the key to achieving this goal. The approach has been formulated as an integer programming problem with nonlinear constraints, which comes from a general but accurate characterisation of the WLAN. This general problem formulation has two implications: the formulation is widely applicable, but the nonlinearity makes it NP-hard. To solve this problem to optimality, we devised an exact algorithm based on a customised version of Benders’ decomposition method. The computational results proved the ability to obtain remarkable power savings. In addition, the good performance of our algorithm in terms of solving times paves the way for its future deployment in real WLANs.publishedVersio

    Antennas and photovoltaic panels: Toward a green Internet of Things

    Get PDF
    The perspective of a wide use of green power motivates the scientific community to study the possibility of fabricating integrated stand-alone devices. In particular, solar energy is one of the most promising renewable powers, and it is widely used in autonomous wireless communication systems. Specifically, integration of sensors and antennas in a solar panel represents a challenge for future technology. In this paper, the feasibility of a single integrated autonomous device equipped with WiFi capability is analyzed, discussing its potentiality in the framework of the Internet of Things

    The role of time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography (MRA) in the evaluation of head-neck vascular anomalies: A preliminary experience

    Get PDF
    Objectives: In this preliminary report, we describe our experience with time-resolved imaging of contrast kinetics-MR angiography (TRICKS-MRA) in the assessment of head-neck vascular anomalies (HNVAs). Methods: We prospectively studied six consecutive patients with clinically suspected or diagnosed HNVAs. All of them underwent TRICKS-MRA of the head and neck as part of the routine for treatment planning. A digital subtraction angiography (DSA) was also performed. Results: TRICKS-MRA could be achieved in all cases. Three subjects were treated based on TRICKS-MRA imaging findings and subsequent DSA examination. In all of them, DSA confirmed the vascular architecture of HNVAs shown by TRICKS-MRA. In the other three patients, a close follow up to assess the evolution of the suspected haemangioma was preferred. Conclusions: TRICKS sequences add important diagnostic information in cases of HNVAs, helpful for therapeutic decisions and post-treatment follow up. We recommend TRICKSMRA use (if technically possible) as part of routine MRI protocol for HNVAs, representing a possible alternative imaging tool to conventional DSA

    Differences in proteolytic activity and gene profiles of fungal strains isolated from the total parenteral nutrition patients

    Get PDF
    Fungal infections constitute a serious clinical problem in the group of patients receiving total parenteral nutrition. The majority of species isolated from infections of the total parenteral nutrition patients belong to Candida genus. The most important factors of Candida spp. virulence are the phenomenon of “phenotypic switching,” adhesins, dimorphism of fungal cells and the secretion of hydrolytic enzymes such as proteinases and lipases, including aspartyl proteinases. We determined the proteolytic activity of yeast-like fungal strains cultured from the clinical materials of patients receiving total parenteral nutrition and detected genes encoding aspartyl proteinases in predominant species Candida glabrata—YPS2, YPS4, and YPS6, and Candida albicans—SAP1–3, SAP4, SAP5, and SAP6. C. albicans released proteinases on the various activity levels. All C. glabrata strains obtained from the clinical materials of examined and control groups exhibited secretion of the proteinases. All 13 isolates of C. albicans possessed genes SAP1–3. Gene SAP4 was detected in genome of 11 C. albicans strains, SAP5 in 6, and SAP6 in 11. Twenty-six among 31 of C. glabrata isolates contained YPS2 gene, 21 the YPS4 gene, and 28 the YPS6 gene. We observed that clinical isolates of C. albicans and C. glabrata differed in SAPs and YPSs gene profiles, respectively, and displayed differentiated proteolytic activity. We suppose that different sets of aspartyl proteinases genes as well as various proteinase-activity levels would have the influence on strains virulence

    Modular assembly of proteins on nanoparticles

    Get PDF
    Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum, for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold–sulfur bonds (Au–S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes, which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond
    • …
    corecore