7 research outputs found

    The A2B adenosine receptor modulates the epithelial- mesenchymal transition through the balance of cAMP/PKA and MAPK/ERK pathway activation in human epithelial lung cells

    Get PDF
    The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2Badenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies

    The use of chest magnetic resonance imaging in interstitial lung disease: a systematic review

    Get PDF
    Thin-slices multi-detector computed tomography (MDCT) plays a key role in the differential diagnosis of interstitial lung disease (ILD). However, thin-slices MDCT has a limited ability to detect active inflammation, which is an important target of newly developed ILD drug therapy. Magnetic resonance imaging (MRI), thanks to its multi-parameter capability, provides better tissue characterisation than thin-slices MDCT.Our aim was to summarise the current status of MRI applications in ILD and to propose an ILD-MRI protocol. A systematic literature search was conducted for relevant studies on chest MRI in patients with ILD.We retrieved 1246 papers of which 55 original papers were selected for the review. We identified 24 studies comparing image quality of thin-slices MDCT and MRI using several MRI sequences. These studies described new MRI sequences to assess ILD parenchymal abnormalities, such as honeycombing, reticulation and ground-glass opacity. Thin-slices MDCT remains superior to MRI for morphological imaging. However, recent studies with ultra-short echo-time MRI showed image quality comparable to thin-slices MDCT. Several studies demonstrated the added value of chest MRI by using functional imaging, especially to detect and quantify inflammatory changes.We concluded that chest MRI could play a role in ILD patients to differentiate inflammatory and fibrotic changes and to assess efficacy of new ILD drugs

    Molecular profile in body fluids in subjects enrolled in a randomised trial for lung cancer screening: Perspectives of integrated strategies for early diagnosis

    No full text
    The aim of this studywas to evaluate the diagnostic value of a grid of molecular genetic markers detectable in sputum and plasma samples of individuals enrolled in a lung cancer screening program with low-dose CT. Subjects enrolled in the baseline screening round of the ITALUNG (randomised) screening trial were invited to provide biological specimens for molecular analysis (1356 subjects out of 1406). We included 98 subjects in this analysis. There was a highly statistically significant difference between proportion of subjects with a negative baseline CT screening test whowere positive to allelic imbalance, and those with a non-calcified nodule (NCN greater than or equal to 5 mm), the reason of recall for all suspects at CT Scan (2: 22.9; P < 0.0001). Allelic imbalance showed good performance for screening of NCN ≥5mm. In subjects recalled for NCN ≥5mm, LOH, K-ras mutations and high levels of free plasma DNA (>5 ng/ml plasma) might be important to support clinical decision making for further follow-up and repeated screening. This study, embedded in an early diagnosis randomised trial, suggests that a multi-screening approach integrating imaging technique and a biomolecular marker panel is worth of further investigation

    Mortality surrogates in combined pulmonary fibrosis and emphysema

    No full text
    BACKGROUND: Idiopathic pulmonary fibrosis (IPF) with co-existent emphysema, termed combined pulmonary fibrosis and emphysema (CPFE) may associate with reduced forced vital capacity (FVC) declines compared to non-CPFE IPF patients. We examined associations between mortality and functional measures of disease progression in two IPF cohorts. METHODS: Visual emphysema presence (>0% emphysema) scored on computed tomography identified CPFE patients (CPFE:non-CPFE: derivation cohort=317:183; replication cohort=358:152), who were subgrouped using 10%, or 15% visual emphysema thresholds, and an unsupervised machine learning model considering emphysema and ILD extents. Baseline characteristics, 1-year relative FVC and diffusing capacity of the lung for carbon monoxide (DLco) decline (linear mixed-effects models), and their associations with mortality (multivariable Cox regression models) were compared across non-CPFE and CPFE subgroups. RESULTS: In both IPF cohorts, CPFE patients with ≥10% emphysema had a greater smoking history and lower baseline DLco compared to CPFE patients with <10% emphysema. Using multivariable Cox regression analyses in patients with ≥10% emphysema, 1-year DLco decline showed stronger mortality associations than 1-year FVC decline. Results were maintained in patients suitable for therapeutic IPF trials and in subjects subgrouped by ≥15% emphysema and using unsupervised machine learning. Importantly, the unsupervised machine learning approach identified CPFE patients in whom FVC decline did not associate strongly with mortality. In non-CPFE IPF patients, 1-year FVC declines ≥5% and ≥10% showed strong mortality associations. CONCLUSION: When assessing disease progression in IPF, DLco decline should be considered in patients with ≥10% emphysema and a ≥5% 1-year relative FVC decline threshold considered in non-CPFE IPF patients

    Patterns of Long COVID Symptoms: A Multi-Center Cross Sectional Study

    No full text
    Background: Long COVID has become a burden on healthcare systems worldwide. Research into the etiology and risk factors has been impeded by observing all diverse manifestations as part of a single entity. We aimed to determine patterns of symptoms in convalescing COVID-19 patients. Methods: Symptomatic patients were recruited from four countries. Data were collected regarding demographics, comorbidities, acute disease and persistent symptoms. Factor analysis was performed to elucidate symptom patterns. Associations of the patterns with patients’ characteristics, features of acute disease and effect on daily life were sought. Results: We included 1027 symptomatic post-COVID individuals in the analysis. The majority of participants were graded as having a non-severe acute COVID-19 (N = 763, 74.3%). We identified six patterns of symptoms: cognitive, pain-syndrome, pulmonary, cardiac, anosmia-dysgeusia and headache. The cognitive pattern was the major symptoms pattern, explaining 26.2% of the variance; the other patterns each explained 6.5–9.5% of the variance. The cognitive pattern was higher in patients who were outpatients during the acute disease. The pain-syndrome pattern was associated with acute disease severity, higher in women and increased with age. The pulmonary pattern was associated with prior lung disease and severe acute disease. Only two of the patterns (cognitive and cardiac) were associated with failure to return to pre-COVID occupational and physical activity status. Conclusion: Long COVID diverse symptoms can be grouped into six unique patterns. Using these patterns in future research may improve our understanding of pathophysiology and risk factors of persistent COVID, provide homogenous terminology for clinical research, and direct therapeutic interventions

    Neoliberalism and the rise of (peasant) nations within the nation: Chiapas in comparative and theoretical perspective

    No full text
    corecore