1,070 research outputs found
Limits on stable iron in TypeIa supernovae from NIR spectroscopy
We obtained optical and near-infrared spectra of TypeIa supernovae
(SNeIa) at epochs ranging from 224 to 496 days after the explosion. The
spectra show emission lines from forbidden transitions of singly ionised iron
and cobalt atoms. We used non-local thermodynamic equilibrium (NLTE) modelling
of the first and second ionisation stages of iron, nickel, and cobalt to fit
the spectra using a sampling algorithm allowing us to probe a broad parameter
space. We derive velocity shifts, line widths, and abundance ratios for iron
and cobalt. The measured line widths and velocity shifts of the singly ionised
ions suggest a shared emitting region. Our data are fully compatible with
radioactive Ni decay as the origin for cobalt and iron. We compare the
measured abundance ratios of iron and cobalt to theoretical predictions of
various SNIa explosion models. These models include, in addition to
Ni, different amounts of Ni and stable Fe. We can
exclude models that produced only Fe or only Ni in addition to
Ni. If we consider a model that has Ni, Ni, and
Fe then our data imply that these ratios are Fe / Ni
and Ni / Ni .Comment: 10 pages, 7 figures, Accepted for publication in A&
Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh
We investigate line formation processes in Type IIb supernovae (SNe) from 100
to 500 days post-explosion using spectral synthesis calculations. The modeling
identifies the nuclear burning layers and physical mechanisms that produce the
major emission lines, and the diagnostic potential of these. We compare the
model calculations with data on the three best observed Type IIb SNe to-date -
SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively
on the main-sequence mass of the star and modeling of the [O I] 6300, 6364
lines constrains the progenitors of these three SNe to the M_ZAMS=12-16 M_sun
range (ejected oxygen masses 0.3-0.9 M_sun), with SN 2011dh towards the lower
end and SN 1993J towards the upper end of the range. The high ejecta masses
from M_ZAMS >= 17 M_sun progenitors give rise to brighter nebular phase
emission lines than observed. Nucleosynthesis analysis thus supports a scenario
of low/moderate mass progenitors for Type IIb SNe, and by implication an origin
in binary systems. We demonstrate how oxygen and magnesium recombination lines
may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh,
a magnesium mass of of 0.02-0.14 M_sun is derived, which gives a Mg/O
production ratio consistent with the solar value. Nitrogen left in the He
envelope from CNO-burning gives strong [N II] 6548, 6583 emission lines that
dominate over H-alpha emission in our models. The hydrogen envelopes of Type
IIb SNe are too small and dilute to produce any noticeable H-alpha emission or
absorption after ~150 days, and nebular phase emission seen around 6550 A is in
many cases likely caused by [N II] 6548, 6583. Finally, the influence of
radiative transport on the emergent line profiles is investigated...(abridged)Comment: Published versio
Nebular spectroscopy of SN 2014J: Detection of stable nickel in near infrared spectra
We present near infrared (NIR) spectroscopy of the nearby supernova 2014J
obtained 450 d after explosion. We detect the [Ni II] 1.939 m line
in the spectra indicating the presence of stable Ni in the ejecta. The
stable nickel is not centrally concentrated but rather distributed as the iron.
The spectra are dominated by forbidden [Fe II] and [Co II] lines. We use lines,
in the NIR spectra, arising from the same upper energy levels to place
constraints on the extinction from host galaxy dust. We find that that our data
are in agreement with the high and low found in earlier studies
from data near maximum light. Using a Ni mass prior from near maximum
light -ray observations, we find 0.05 M of stable nickel
to be present in the ejecta. We find that the iron group features are
redshifted from the host galaxy rest frame by 600 km s.Comment: 6 pages, 4 figures, submitted to A&
Supernova 2002ic: the collapse of a stripped-envelope, massive star in a dense medium ?
We revisit the case of SN2002ic that recently revived the debate about the
progenitors of SNeIa after the claim of the unprecedented presence of hydrogen
lines over a diluted SNIa spectrum. As an alternative to the previous
interpretation, we suggest that SN2002ic actually was a type Ic SN, the core
collapse of a massive star which lost its hydrogen and helium envelope. In this
scenario the observed interaction with a dense circumstellar material (CSM) is
the predictable consequence of the intense mass-loss of the progenitor and/or
of the presence of a gas rich environment. With this view we establish a link
between energetic SNeIc and highly interacting SNeIIn and add some credits to
the proposed association of some SNeIIn to GRBs.Comment: Accepted for publication on ApJ
Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha
Stellar evolution models predict the existence of hybrid white dwarfs (WDs)
with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with
masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the
Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear
explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid
WD under the assumption that nuclear burning only occurs in carbon-rich
material. Performing hydrodynamics simulations of the explosion and detailed
nucleosynthesis post-processing calculations, we find that only 0.014 Msun of
material is ejected while the remainder of the mass stays bound. The ejecta
consist predominantly of iron-group elements, O, C, Si and S. We also calculate
synthetic observables for our model and find reasonable agreement with the
faint Type Iax SN 2008ha. This shows for the first time that deflagrations in
near-MCh WDs can in principle explain the observed diversity of Type Iax
supernovae. Leaving behind a near-MCh bound remnant opens the possibility for
recurrent explosions or a subsequent accretion-induced collapse in faint Type
Iax SNe, if further accretion episodes occur. From binary population synthesis
calculations, we find the rate of hybrid WDs approaching MCh to be on the order
of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA
Quantitative spectral analysis of the sdB star HD 188112: a helium-core white dwarf progenitor
HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass
too low to ignite core helium burning and is therefore considered as a
pre-extremely low mass (ELM) white dwarf (WD). ELM WDs (M 0.3 Msun) are
He-core objects produced by the evolution of compact binary systems. We present
in this paper a detailed abundance analysis of HD 188112 based on
high-resolution Hubble Space Telescope (HST) near and far-ultraviolet
spectroscopy. We also constrain the mass of the star's companion. We use hybrid
non-LTE model atmospheres to fit the observed spectral lines and derive the
abundances of more than a dozen elements as well as the rotational broadening
of metallic lines. We confirm the previous binary system parameters by
combining radial velocities measured in our UV spectra with the already
published ones. The system has a period of 0.60658584 days and a WD companion
with M 0.70 Msun. By assuming a tidally locked rotation, combined with
the projected rotational velocity (v sin i = 7.9 0.3 km s) we
constrain the companion mass to be between 0.9 and 1.3 Msun. We further discuss
the future evolution of the system as a potential progenitor of a
(underluminous) type Ia supernova. We measure abundances for Mg, Al, Si, P, S,
Ca, Ti, Cr, Mn, Fe, Ni, and Zn, as well as for the trans-iron elements Ga, Sn,
and Pb. In addition, we derive upper limits for the C, N, O elements and find
HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE
effects on the line strength of some ionic species such as Si II and Ni II. The
metallic abundances indicate that the star is metal-poor, with an abundance
pattern most likely produced by diffusion effects.Comment: Accepted for publication in A&
SN 2013df, a double-peaked IIb supernova from a compact progenitor and an extended H envelope
Optical observations of the type IIb SN 2013df from a few days to about 250
days after explosion are presented. These observations are complemented with UV
photometry taken by \textit{SWIFT} up to 60 days post-explosion. The
double-peak optical light curve is similar to those of SNe 1993J and 2011fu
although with different decline and rise rates. From the modelling of the
bolometric light curve, we have estimated that the total mass of synthesised
Ni in the explosion is M, while the ejecta mass is
M and the explosion energy erg. In
addition, we have estimated a lower limit to the progenitor radius ranging from
. The spectral evolution indicates that SN 2013df had a
hydrogen envelope similar to SN 1993J ( M). The line
profiles in nebular spectra suggest that the explosion was asymmetric with the
presence of clumps in the ejecta, while the [O\,{\sc i}]
, luminosities, may indicate that the progenitor
of SN 2013df was a relatively low mass star ( M).Comment: 18 pages, 11 figures, 9 tables, accepted for publication in MNRA
The Type Ib SN 1999dn: One Year of Photometric and Spectroscopic Monitoring
Extensive optical and near-infrared (NIR) observations of the type Ib
supernova 1999dn are presented, covering the first year after explosion. These
new data turn this object, already considered a prototypical SNIb, into one of
the best observed objects of its class. The light curve of SN 1999dn is mostly
similar in shape to that of other SNeIb but with a moderately faint peak
M_V=-17.2 mag). From the bolometric light curve and ejecta expansion
velocities, we estimate that about 0.11 Msun of 56Ni were produced during the
explosion and that the total ejecta mass was 4-6 Msun with a kinetic energy of
at least 5x10^{51} erg. The spectra of SN 1999dn at various epochs are similar
to those of other Stripped Envelope (SE) SNe showing clear presence of H at
early epochs. The high explosion energy and ejected mass, along with the small
flux ratio [CaII]/[OI] measured in the nebular spectrum, together with the lack
of signatures of dust formation and the relatively high-metallicity environment
point toward a single massive progenitor (M_ZAMS>=23-25 Msun) for SN 1999dn.Comment: 15 pages, 11 figures. MNRAS accepted; This version matches the
published on
Moderately Luminous type II Supernovae
Core-collapse Supernovae (CC-SNe) descend from progenitors more massive than
about 8 Msun. Because of the young age of the progenitors, the ejecta may
eventually interact with the circumstellar medium (CSM) via highly energetic
processes detectable in the radio, X-ray, ultraviolet (UV) and, sometimes, in
the optical domains. In this paper we present ultraviolet, optical and near
infrared observations of five type II SNe, namely SNe 2009dd, 2007pk, 2010aj,
1995ad, and 1996W. Together with few other SNe they form a group of moderately
luminous type II events. We collected photometry and spectroscopy with several
telescopes in order to construct well-sampled light curves and spectral
evolutions from the photospheric to the nebular phases. Both photometry and
spectroscopy indicate a degree of heterogeneity in this sample. The light
curves have luminous peak magnitudes (). The ejected
masses of ^56\ni for three SNe span a wide range of values
(MsunM(\ni)Msun), while for a fourth
(SN2010aj) we could determine a stringent upper limit (Msun).
Clues of interaction, such as the presence of high velocity (HV) features of
the Balmer lines, are visible in the photospheric spectra of SNe 2009dd and
1996W. For SN2007pk we observe a spectral transition from a type IIn to a
standard type II SN. Modelling the observations of SNe 2009dd, 2010aj and
1995ad with radiation hydrodynamics codes, we infer kinetic plus thermal
energies of about 0.2-0.5 foe, initial radii of 2-5 cm and
ejected masses of 5.0-9.5 Msun. These values suggest moderate-mass,
super-asymptotic giant branch (SAGB) or red super-giants (RSG) stars as SN
precursors, in analogy with other luminous type IIP SNe 2007od and 2009bw.Comment: 28 pages, 27 fig, accepted by A&A, 3 pages of online material,
abstract abridged. revised significantly with respect to the previous versio
- …