4 research outputs found
Effects of Electrospinning Parameter Adjustment on the Mechanical Behavior of Poly-ε-caprolactone Vascular Scaffolds
Electrospinning is a perspective method widely suggested for use in bioengineering applications, but the variability in currently available data and equipment necessitates additional research to ascertain the desirable methodology. In this study, we aimed to describe the effects of electrospinning technique alterations on the structural and mechanical properties of (1,7)-polyoxepan-2-one (poly-ε-caprolactone, PCL) scaffolds, such as circumferential and longitudinal stress/strain curves, in comparison with corresponding properties of fresh rat aorta samples. Scaffolds manufactured under different electrospinning modes were analyzed and evaluated using scanning electronic microscopy as well as uniaxial longitudinal and circumferential tensile tests. Fiber diameter was shown to be the most crucial characteristic of the scaffold, correlating with its mechanical properties
Immobilized Bisphosphonates as Potential Inhibitors of Bioprosthetic Calcification: Effects on Various Xenogeneic Cardiovascular Tissues
Calcification is the major factor limiting the clinical use of bioprostheses. It may be prevented by the immobilization of bisphosphonic compounds (BPs) on the biomaterial. In this study, we assessed the accumulation and structure of calcium phosphate deposits in collagen-rich bovine pericardium (Pe) and elastin-rich porcine aortic wall (Ao) and bovine jugular vein wall (Ve) cross-linked with glutaraldehyde (GA) or diepoxy compound (DE). These tissues were then modified with pamidronic (PAM) acid or 2-(2′-carboxyethylamino)ethylidene-1,1-bisphosphonic (CEABA) acid. Tissue transformations were studied using Fourier-transform infrared spectroscopy. After subcutaneous implantation of the biomaterials in 220 rats, calcification dynamics were examined using atomic absorption spectrophotometry, light microscopy after von Kossa staining, and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy The calcium content in all GA-cross-linked tissues and DE-cross-linked Ao increased to 100–160 mg/g on day 60 after implantation. BPs prevented the accumulation of phosphates on the surface of all materials and most effectively inhibited calcification in GA-cross-linked Ao and DE-cross-linked Pe. PAM containing -OH in the R1 group was more effective than CEABA containing -H in R1. The calcification-inhibitory effect of BPs may be realized through their ability to block nucleation and prevent the growth of hydroxyapatite crystals
In Vivo Evaluation of PCL Vascular Grafts Implanted in Rat Abdominal Aorta
Electrospun tissue-engineered grafts made of biodegradable materials have become a perspective search field in terms of vascular replacement, and more research is required to describe their in vivo transformation. This study aimed to give a detailed observation of hemodynamic and structural properties of electrospun, monolayered poly-ε-caprolactone (PCL) grafts in an in vivo experiment using a rat aorta replacement model at 10, 30, 60 and 90 implantation days. It was shown using ultrasound diagnostic and X-ray tomography that PCL grafts maintain patency throughout the entire follow-up period, without stenosis or thrombosis. Vascular compliance, assessed by the resistance index (RI), remains at the stable level from the 10th to the 90th day. A histological study using hematoxylin-eosin (H&E), von Kossa and Russell–Movat pentachrome staining demonstrated the dynamics of tissue response to the implant. By the 10th day, an endothelial monolayer was forming on the graft luminal surface, followed by the gradual growth and compaction of the neointima up to the 90th day. The intense inflammatory cellular reaction observed on the 10th day in the thickness of the scaffold was changed by the fibroblast and myofibroblast penetration by the 30th day. The cellularity maximum was reached on the 60th day, but by the 90th day the cellularity significantly (p = 0.02) decreased. From the 60th day, in some samples, the calcium phosphate depositions were revealed at the scaffold-neointima interface. Scanning electron microscopy showed that the scaffolds retained their fibrillar structure up to the 90th day. Thus, we have shown that the advantages of PCL scaffolds are excellent endothelialization and good surgical outcome. The disadvantages include their slow biodegradation, ineffective cellularization, and risks for mineralization and intimal hyperplasia