41 research outputs found
A Quantitative Analytical Method to Test for Salt Effects on Giant Unilamellar Vesicles
Today, free-standing membranes, i.e. liposomes and vesicles, are used in a multitude of
applications, e.g. as drug delivery devices and artificial cell models. Because current
laboratory techniques do not allow handling of large sample sizes, systematic and
quantitative studies on the impact of different effectors, e.g. electrolytes, are limited.
In this work, we evaluated the Hofmeister effects of ten alkali metal halides on giant
unilamellar vesicles made of palmitoyloleoylphosphatidylcholine for a large sample size by
combining the highly parallel water-in-oil emulsion transfer vesicle preparation method with
automatic haemocytometry. We found that this new quantitative screening method is highly
reliable and consistent with previously reported results. Thus, this method may provide a
significant methodological advance in analysis of effects on free-standing model
membranes
Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex
<p>Abstract</p> <p>Background</p> <p>To study the organization and interaction with the fusion domain (or fusion peptide, FP) of the transmembrane domain (TMD) of influenza virus envelope glycoprotein for its role in membrane fusion which is also essential in the cellular trafficking of biomolecules and sperm-egg fusion.</p> <p>Results</p> <p>The fluorescence and gel electrophoresis experiments revealed a tight self-assembly of TMD in the model membrane. A weak but non-random interaction between TMD and FP in the membrane was found. In the complex, the central TMD oligomer was packed by FP in an antiparallel fashion. FP insertion into the membrane was altered by binding to TMD. An infrared study exhibited an enhanced membrane perturbation by the complex formation. A model was built to illustrate the role of TMD in the late stages of influenza virus-mediated membrane fusion reaction.</p> <p>Conclusion</p> <p>The TMD oligomer anchors the fusion protein in the membrane with minimal destabilization to the membrane. Upon associating with FP, the complex exerts a synergistic effect on the membrane perturbation. This effect is likely to contribute to the complete membrane fusion during the late phase of fusion protein-induced fusion cascade. The results presented in the work characterize the nature of the interaction of TMD with the membrane and TMD in a complex with FP in the steps leading to pore initiation and dilation during virus-induced fusion. Our data and proposed fusion model highlight the key role of TMD-FP interaction and have implications on the fusion reaction mediated by other type I viral fusion proteins. Understanding the molecular mechanism of membrane fusion may assist in the design of anti-viral drugs.</p
Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex
<p>Abstract</p> <p>Background</p> <p>To study the organization and interaction with the fusion domain (or fusion peptide, FP) of the transmembrane domain (TMD) of influenza virus envelope glycoprotein for its role in membrane fusion which is also essential in the cellular trafficking of biomolecules and sperm-egg fusion.</p> <p>Results</p> <p>The fluorescence and gel electrophoresis experiments revealed a tight self-assembly of TMD in the model membrane. A weak but non-random interaction between TMD and FP in the membrane was found. In the complex, the central TMD oligomer was packed by FP in an antiparallel fashion. FP insertion into the membrane was altered by binding to TMD. An infrared study exhibited an enhanced membrane perturbation by the complex formation. A model was built to illustrate the role of TMD in the late stages of influenza virus-mediated membrane fusion reaction.</p> <p>Conclusion</p> <p>The TMD oligomer anchors the fusion protein in the membrane with minimal destabilization to the membrane. Upon associating with FP, the complex exerts a synergistic effect on the membrane perturbation. This effect is likely to contribute to the complete membrane fusion during the late phase of fusion protein-induced fusion cascade. The results presented in the work characterize the nature of the interaction of TMD with the membrane and TMD in a complex with FP in the steps leading to pore initiation and dilation during virus-induced fusion. Our data and proposed fusion model highlight the key role of TMD-FP interaction and have implications on the fusion reaction mediated by other type I viral fusion proteins. Understanding the molecular mechanism of membrane fusion may assist in the design of anti-viral drugs.</p
Structure-Function Relations in Oxaloacetate Decarboxylase Complex. Fluorescence and Infrared Approaches to Monitor Oxomalonate and Na+ Binding Effect
ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of α, β and γ subunits. The α subunit contains the carboxyltransferase catalytic site. characteristic of a high content of α helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of β sheet structures and a concomitant increase of α helix structures. Oxomalonate binding to αγand α subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. alters the tryptophan environment of the β subunit, consistent with the function of these subunits within the enzyme complex. Formation of a complex between OAD and its substrates elicits structural changes in the α-helical as well as β-strand secondary structure elements
The multiple faces of self-assembled lipidic systems
Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled