39 research outputs found
サイトカインによる新規抗有糸分裂剤AM-132の抗腫瘍活性増強に関する研究
取得学位:博士(薬学),学位授与番号:博甲第472号,学位授与年月日:平成14年3月22日,学位授与年:200
Measurement of serum hepcidin-25 levels as a potential test for diagnosing hemochromatosis and related disorders
石川県立中央病院金沢大学医薬保健研究域医学系Iron overload syndromes include a wide spectrum of genetic and acquired conditions. Recent studies suggest suppressed hepcidin synthesis in the liver to be the molecular basis of hemochromatosis. However, a liver with acquired iron overload synthesizes an adequate amount of hepcidin. Thus, hepcidin could function as a biochemical marker for differential diagnosis of iron overload syndromes. Methods We measured serum iron parameters and hepcidin- 25 levels followed by sequencing HFE, HJV, HAMP, TFR2, and SLC40A1 genes in 13 Japanese patients with iron overload syndromes. In addition, we performed direct measurement of serum hepcidin-25 levels using liquid chromatography-tandem mass spectrometry in 3 Japanese patients with aceruloplasminemia and 4 Italians with HFE hemochromatosis. Results One patient with HJV hemochromatosis, 2 with TFR2 hemochromatosis, and 3 with ferroportin disease were found among the 13 Japanese patients. The remaining 7 Japanese patients showed no evidence for genetic basis of iron overload syndrome. As far as the serum hepcidin-25 was concerned, seven patients with hemochromatosis and 3 with aceruloplasminemia showed markedly decreased serum hepcidin-25 levels. In contrast, 3 patients with ferroportin disease and 7 with secondary iron overload syndromes showed serum hepcidin levels parallel to their hyperferritinemia. Patients with iron overload syndromes were divided into 2 phenotypes presenting as low and high hepcidinemia. These were then associated with their genotypes. Conclusion Determining serum hepcidin-25 levels may aid differential diagnosis of iron overload syndromes prior to genetic analysis. © Springer 2010