2 research outputs found
Regional Databases within Invasive Plant Species Distribution Monitoring
ABSTRACT In the hierarchical system of invasive species inventory the regional level is the basic one. The article is devoted to the use of regional databases at the organization of biological invasions monitoring. The accumulation of information in the database about the land cover at the regional level leads to the accumulation of data about the distribution of invasive species. The use of spatial modeling methods allow to create predictive maps of invasive species potential habitat in the region
A Two-Mediator System Based on a Nanocomposite of Redox-Active Polymer Poly(thionine) and SWCNT as an Effective Electron Carrier for Eukaryotic Microorganisms in Biosensor Analyzers
Electropolymerized thionine was used as a redox-active polymer to create a two-mediated microbial biosensor for determining biochemical oxygen demand (BOD). The electrochemical characteristics of the conducting system were studied by cyclic voltammetry and electrochemical impedance spectroscopy. It has been shown that the most promising in terms of the rate of interaction with the yeast B. adeninivorans is the system based on poly(thionine), single-walled carbon nanotubes (SWCNT), and neutral red (kint = 0.071 dm3/(g·s)). The biosensor based on this system is characterized by high sensitivity (the lower limit of determined BOD concentrations is 0.4 mgO2/dm3). Sample analysis by means of the developed analytical system showed that the results of the standard dilution method and those using the biosensor differed insignificantly. Thus, for the first time, the fundamental possibility of effectively using nanocomposite materials based on SWCNT and the redox-active polymer poly(thionine) as one of the components of two-mediator systems for electron transfer from yeast microorganisms to the electrode has been shown. It opens up prospects for creating stable and highly sensitive electrochemical systems based on eukaryotes