2 research outputs found

    Study of Structure of Industrial Acid Hydrolysis Lignin, Oxidized in the H<sub>2</sub>O<sub>2</sub>-H<sub>2</sub>SO<sub>4</sub> System

    No full text
    <p>Products of oxidation of industrial acid hydrolysis lignin in the H<sub>2</sub>O<sub>2</sub>-H<sub>2</sub>SO<sub>4</sub> system were studied using <sup>13</sup>C NMR (in solution and solid state), MALDI-MS, and MS(ESI) techniques. Oxidation of hydrolysis lignin leads to the opening of aromatic rings of lignin, yielding carboxylic groups. Alkyl aryl ether linkages (β-O-4-bonds) between lignin phenyl propane units are not significantly affected by the oxidation. The structure of oxidized hydrolysis lignin is proposed. The basic structural unit of oxidized hydrolysis lignin is a muconic acid derivative.</p

    Coordination to Imidazole Ring Switches on Phosphorescence of Platinum Cyclometalated Complexes: The Route to Selective Labeling of Peptides and Proteins via Histidine Residues

    No full text
    In this study, we have shown that substitution of chloride ligand for imidazole (Im) ring in the cyclometalated platinum complex Pt­(phpy)­(PPh<sub>3</sub>)Cl (<b>1</b>; phpy, 2-phenylpyridine; PPh<sub>3</sub>, triphenylphosphine), which is nonemissive in solution, switches on phosphorescence of the resulting compound. Crystallographic and nuclear magnetic resonance (NMR) spectroscopic studies of the substitution product showed that the luminescence ignition is a result of Im coordination to give the [Pt­(phpy)­(Im)­(PPh<sub>3</sub>)]Cl complex. The other imidazole-containing biomolecules, such as histidine and histidine-containing peptides and proteins, also trigger luminescence of the substitution products. The complex <b>1</b> proved to be highly selective toward the imidazole ring coordination that allows site-specific labeling of peptides and proteins with <b>1</b> using the route, which is orthogonal to the common bioconjugation schemes via lysine, aspartic and glutamic acids, or cysteine and does not require any preliminary modification of a biomolecule. The utility of this approach was demonstrated on (i) site-specific modification of the ubiquitin, a small protein that contains only one His residue in its sequence, and (ii) preparation of nonaggregated HSA-based Pt phosphorescent probe. The latter particles easily internalize into the live HeLa cells and display a high potential for live-cell phosphorescence lifetime imaging (PLIM) as well as for advanced correlation PLIM and FLIM experiments
    corecore