2 research outputs found
Study of Structure of Industrial Acid Hydrolysis Lignin, Oxidized in the H<sub>2</sub>O<sub>2</sub>-H<sub>2</sub>SO<sub>4</sub> System
<p>Products of oxidation of industrial acid hydrolysis lignin in the H<sub>2</sub>O<sub>2</sub>-H<sub>2</sub>SO<sub>4</sub> system were studied using <sup>13</sup>C NMR (in solution and solid state), MALDI-MS, and MS(ESI) techniques. Oxidation of hydrolysis lignin leads to the opening of aromatic rings of lignin, yielding carboxylic groups. Alkyl aryl ether linkages (β-O-4-bonds) between lignin phenyl propane units are not significantly affected by the oxidation. The structure of oxidized hydrolysis lignin is proposed. The basic structural unit of oxidized hydrolysis lignin is a muconic acid derivative.</p
Coordination to Imidazole Ring Switches on Phosphorescence of Platinum Cyclometalated Complexes: The Route to Selective Labeling of Peptides and Proteins via Histidine Residues
In this study, we have shown that
substitution of chloride ligand
for imidazole (Im) ring in the cyclometalated platinum complex PtÂ(phpy)Â(PPh<sub>3</sub>)Cl (<b>1</b>; phpy, 2-phenylpyridine; PPh<sub>3</sub>, triphenylphosphine), which is nonemissive in solution, switches
on phosphorescence of the resulting compound. Crystallographic and
nuclear magnetic resonance (NMR) spectroscopic studies of the substitution
product showed that the luminescence ignition is a result of Im coordination
to give the [PtÂ(phpy)Â(Im)Â(PPh<sub>3</sub>)]Cl complex. The other imidazole-containing
biomolecules, such as histidine and histidine-containing peptides
and proteins, also trigger luminescence of the substitution products.
The complex <b>1</b> proved to be highly selective toward the
imidazole ring coordination that allows site-specific labeling of
peptides and proteins with <b>1</b> using the route, which is
orthogonal to the common bioconjugation schemes via lysine, aspartic
and glutamic acids, or cysteine and does not require any preliminary
modification of a biomolecule. The utility of this approach was demonstrated
on (i) site-specific modification of the ubiquitin, a small protein
that contains only one His residue in its sequence, and (ii) preparation
of nonaggregated HSA-based Pt phosphorescent probe. The latter particles
easily internalize into the live HeLa cells and display a high potential
for live-cell phosphorescence lifetime imaging (PLIM) as well as for
advanced correlation PLIM and FLIM experiments