27 research outputs found

    Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants.

    Get PDF
    AIMS/HYPOTHESIS: The aim of this work was to determine whether placental endoplasmic reticulum (ER) stress may contribute to the pathophysiology of gestational diabetes mellitus (GDM) and to test the efficacy of chemical chaperones and antioxidant vitamins in ameliorating that stress in a trophoblast-like cell line in vitro. METHODS: Placental samples were obtained from women suffering from GDM and from normoglycaemic controls and were frozen immediately. Women with GDM had 2 h serum glucose levels > 9.0 mmol/l following a 75 g oral glucose tolerance test and were treated with diet and insulin when necessary. Western blotting was used to assess markers of ER stress. To test the effects of hyperglycaemia on the generation of ER stress, a new trophoblast-like cell line, BeWo-NG, was generated by culturing in a physiological glucose concentration of 5.5 mmol/l (over 20 passages) before challenging with 10 or 20 mmol/l glucose. RESULTS: All GDM patients were well-controlled (HbA1c 5.86 ± 0.55% or 40.64 ± 5.85 mmol/mol, n = 11). Low-grade ER stress was observed in the placental samples, with dilation of ER cisternae and increased phosphorylation of eukaryotic initiation factor 2 subunit α. Challenge of BeWo-NG with high glucose activated the same pathways, but this was as a result of acidosis of the culture medium rather than the glucose concentration per se. Addition of chemical chaperones 4-phenylbutyrate and tauroursodeoxycholic acid and vitamins C and E ameliorated the ER stress. CONCLUSIONS/INTERPRETATION: This is the first report of placental ER stress in GDM patients. Chemical chaperones and antioxidant vitamins represent potential therapeutic interventions for GDM.This study was supported by a grant from the Wellcome Trust (084804/2/08/Z). TE-B was supported by a Newton Advanced Fellowship awarded to TE-B and GJB from the Academy of Medical Sciences, and by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00125-016-4040-

    Decreased Fatty Acid Transporter FABP1 and Increased Isoprostanes and Neuroprostanes in the Human Term Placenta: Implications for Inflammation and Birth Weight in Maternal Pre-Gestational Obesity.

    Get PDF
    The rise in prevalence of obesity in women of reproductive age in developed and developing countries might propagate intergenerational cycles of detrimental effects on metabolic health. Placental lipid metabolism is disrupted by maternal obesity, which possibly affects the life-long health of the offspring. Here, we investigated placental lipid metabolism in women with pre-gestational obesity as a sole pregnancy complication and compared it to placental responses of lean women. Open profile and targeted lipidomics were used to assess placental lipids and oxidised products of docosahexaenoic (DHA) and arachidonic acid (AA), respectively, neuroprostanes and isoprostanes. Despite no overall signs of lipid accumulation, DHA and AA levels in placentas from obese women were, respectively, 2.2 and 2.5 times higher than those from lean women. Additionally, a 2-fold increase in DHA-derived neuroprostanes and a 1.7-fold increase in AA-derived isoprostanes were seen in the obese group. These changes correlated with a 70% decrease in placental FABP1 protein. Multivariate analyses suggested that neuroprostanes and isoprostanes are associated with maternal and placental inflammation and with birth weight. These results might shed light on the molecular mechanisms associated with altered placental fatty acid metabolism in maternal pre-gestational obesity, placing these oxidised fatty acids as novel mediators of placental function

    Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice.

    Get PDF
    Funder: Department of Physiology, Development and Neuroscience Seed FundingFunder: Isaac Newton Trust Research GrantFunder: Medical Research Council PhD StipendFunder: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior FellowshipAIM: The current study investigated the impact of maternal obesity on placental phenotype in relation to fetal growth and sex. METHODS: Female C57BL6/J mice were fed either a diet high in fat and sugar or a standard chow diet, for 6 weeks prior to, and during, pregnancy. At day 19 of gestation, placental morphology and mitochondrial respiration and dynamics were assessed using high-resolution respirometry, stereology, and molecular analyses. RESULTS: Diet-induced maternal obesity increased the rate of small for gestational age fetuses in both sexes, and increased blood glucose concentrations in offspring. Placental weight, surface area, and maternal blood spaces were decreased in both sexes, with reductions in placental trophoblast volume, oxygen diffusing capacity, and an increased barrier to transfer in males only. Despite these morphological changes, placental mitochondrial respiration was unaffected by maternal obesity, although the influence of fetal sex on placental respiratory capacity varied between dietary groups. Moreover, in males, but not females, maternal obesity increased mitochondrial complexes (II and ATP synthase) and fission protein DRP1 abundance. It also reduced phosphorylated AMPK and capacity for lipid synthesis, while increasing indices of oxidative stress, specifically in males. In females only, placental mitochondrial biogenesis and capacity for lipid synthesis, were both enhanced. The abundance of uncoupling protein-2 was decreased by maternal obesity in both fetal sexes. CONCLUSION: Maternal obesity exerts sex-dependent changes in placental phenotype in association with alterations in fetal growth and substrate supply. These findings may inform the design of personalized lifestyle interventions or therapies for obese pregnant women

    Mitochondrial Bioenergetic Alterations in Mouse Neuroblastoma Cells Infected with Sindbis Virus: Implications to Viral Replication and Neuronal Death

    Get PDF
    The metabolic resources crucial for viral replication are provided by the host. Details of the mechanisms by which viruses interact with host metabolism, altering and recruiting high free-energy molecules for their own replication, remain unknown. Sindbis virus, the prototype of and most widespread alphavirus, causes outbreaks of arthritis in humans and serves as a model for the study of the pathogenesis of neurological diseases induced by alphaviruses in mice. In this work, respirometric analysis was used to evaluate the effects of Sindbis virus infection on mitochondrial bioenergetics of a mouse neuroblastoma cell lineage, Neuro 2a. The modulation of mitochondrial functions affected cellular ATP content and this was synchronous with Sindbis virus replication cycle and cell death. At 15 h, irrespective of effects on cell viability, viral replication induced a decrease in oxygen consumption uncoupled to ATP synthesis and a 36% decrease in maximum uncoupled respiration, which led to an increase of 30% in the fraction of oxygen consumption used for ATP synthesis. Decreased proton leak associated to complex I respiration contributed to the apparent improvement of mitochondrial function. Cellular ATP content was not affected by infection. After 24 h, mitochondria dysfunction was clearly observed as maximum uncoupled respiration reduced 65%, along with a decrease in the fraction of oxygen consumption used for ATP synthesis. Suppressed respiration driven by complexes I- and II-related substrates seemed to play a role in mitochondrial dysfunction. Despite the increase in glucose uptake and glycolytic flux, these changes were followed by a 30% decrease in ATP content and neuronal death. Taken together, mitochondrial bioenergetics is modulated during Sindbis virus infection in such a way as to favor ATP synthesis required to support active viral replication. These early changes in metabolism of Neuro 2a cells may form the molecular basis of neuronal dysfunction and Sindbis virus-induced encephalitis

    Energy Metabolism in H460 Lung Cancer Cells: Effects of Histone Deacetylase Inhibitors

    Get PDF
    BACKGROUND: Tumor cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channeled to lactate production. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin. This treatment was able to shift energy metabolism by activating mitochondrial systems such as the respiratory chain and oxidative phosphorylation that were largely repressed in the untreated controls. METHODOLOGY/PRINCIPAL FINDINGS: Various cellular and biochemical parameters were evaluated in lung cancer H460 cells treated with the histone deacetylase inhibitors (HDACis), sodium butyrate (NaB) and trichostatin A (TSA). NaB and TSA reduced glycolytic flux, assayed by lactate release by H460 cells in a concentration dependent manner. NaB inhibited the expression of glucose transporter type 1 (GLUT 1), but substantially increased mitochondria bound hexokinase (HK) activity. NaB induced increase in HK activity was associated to isoform HK I and was accompanied by 1.5 fold increase in HK I mRNA expression and cognate protein biosynthesis. Lactate dehydrogenase (LDH) and pyruvate kinase (PYK) activities were unchanged by HDACis suggesting that the increase in the HK activity was not coupled to glycolytic flux. High resolution respirometry of H460 cells revealed NaB-dependent increased rates of oxygen consumption coupled to ATP synthesis. Metabolomic analysis showed that NaB altered the glycolytic metabolite profile of intact H460 cells. Concomitantly we detected an activation of the pentose phosphate pathway (PPP). The high O(2) consumption in NaB-treated cells was shown to be unrelated to mitochondrial biogenesis since citrate synthase (CS) activity and the amount of mitochondrial DNA remained unchanged. CONCLUSION: NaB and TSA induced an increase in mitochondrial function and oxidative metabolism in H460 lung tumor cells concomitant with a less proliferative cellular phenotype

    Breast Milk Content of Vitamin A and E from Early- to Mid-Lactation Is Affected by Inadequate Dietary Intake in Brazilian Adult Women

    No full text
    Our aims were to investigate vitamin A and E status during lactation and the determinants of breast milk content for the appropriate nutrition of the infant in a study with nursing Brazilian women. We hypothesized that both inadequate intake and the lipoprotein distribution of vitamin A and E during lactation could have an impact on their breast milk levels from early- to mid-lactation. Nineteen adult lactating women participated in this longitudinal observational study, in which dietary records, blood and mature breast milk samples were collected for the analysis of vitamin A and E, and carotenoids in early- (2nd to 4th week) and mid-lactation (12th to 14th week). Nutrient intake was balanced by the Multiple Source Method (MSM), and the intake of vitamin A and E was inadequate in 74 and 100% of the women, respectively. However, these results were not reflected in low serum concentrations of retinol and only 37% of the volunteers were vitamin E deficient according to the blood biomarker. As lactation progressed, vitamin A and E status worsened, and this was clearly observed by the decrease in their content in breast milk. The reduced content of vitamin A and E in the breast milk was not related to their distribution in lipoproteins. Taken together, the contents of vitamin A and E in breast milk seemed to be more sensitive markers of maternal nutrition status than respective blood concentrations, and dietary assessment by the MSM in early lactation was sensitive to indicate later risks of deficiency and should support maternal dietary guidance to improve the infant’s nutrition
    corecore