311 research outputs found

    Non-Gaussianity of the density distribution in accelerating universes

    Full text link
    According to recent observations, the existence of the dark energy has been considered. Even though we have obtained the constraint of the equation of the state for dark energy (p=wρp = w \rho) as 1w0.78-1 \le w \le -0.78 by combining WMAP data with other astronomical data, in order to pin down ww, it is necessary to use other independent observational tools. For this purpose, we consider the ww dependence of the non-Gaussianity of the density distribution generated by nonlinear dynamics. To extract the non-Gaussianity, we follow a semi-analytic approach based on Lagrangian linear perturbation theory, which provides an accurate value for the quasi-nonlinear region. From our results, the difference of the non-Gaussianity between w=1w = -1 and w=0.5w= -0.5 is about 4% while that between w=1w = -1 and w=0.8w= -0.8 is about 0.90.9 %. For the highly non-linear region, we estimate the difference by combining this perturbative approach with N-body simulation executed for our previous paper. From this, we can expect the difference to be more enhanced in the low-zz region, which suggests that the non-Gaussianity of the density distribution potentially plays an important role for extracting the information of dark energy.Comment: 15 pages, 4 figures, accepted for publication in JCAP; v2: smoothing scale has been change

    On the Anorthite Found in Lava Flow

    Get PDF
    corecore