174 research outputs found

    Pressure-induced Superconductivity in a Ferromagnet UGe2_2 -- Resistivity Measurements in Magnetic Field --

    Full text link
    The electrical resistivity measurements in the magnetic field are carried out on the pressure-induced superconductor UGe2_2. The superconductivity is observed from 1.06 to 1.44 GPa. The upper critical field of HC2H_{C2} is anisotropic where HC2(T)H_{C2}(T) exhibits positive curvature for H//bH//b and cc-axis. The characteristic enhancement of HC2H_{C2} is reconfirmed for H//aH//a-axis. In the temperature and field dependence of resistivity at P>PCP > P_{C} where the ferromagnetic ordering disappears, it is observed that the application of the external field along the {\it a}-axis increases the coefficient of Fermi liquid behavior AT2AT^{2} correspondingly to the metamagnetic transition.Comment: To be published in the proceeding of the International Conference on High Pressure Science and Technology(AIRAPT-18),Beijing,China,23-27 July 200

    Pressure-temperature Phase Diagram of Polycrystalline UCoGe Studied by Resistivity Measurement

    Full text link
    Recently, coexistence of ferromagnetism (T_Curie = 2.8K) and superconductivity (T_sc = 0.8K) has been reported in UCoGe, a compound close to a ferromagnetic instability at ambient pressure P. Here we present resistivity measurements under pressure on a UCoGe polycrystal. The phase diagram obtained from resistivity measurements on a polycrystalline sample is found to be qualitatively different to those of all other ferromagnetic superconductors. By applying high pressure, ferromagnetism is suppressed at a rate of 1.4 K/GPa. No indication of ferromagnetic order has been observed above P ~ 1GPa. The resistive superconducting transition is, however, quite stable in temperature and persists up to the highest measured pressure of about 2.4GPa. Superconductivity would therefore appear also in the paramagnetic phase. However, the appearance of superconductivity seems to change at a characteristic pressure P* ~ 0.8GPa. Close to a ferromagnetic instability, the homogeneity of the sample can influence strongly the electronic and magnetic properties and therefore bulk phase transitions may differ from the determination by resistivity measurements.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Dynamical properties of S=1 bond-alternating Heisenberg chains in transverse magnetic fields

    Full text link
    We calculate dynamical structure factors of the S=1 bond-alternating Heisenberg chain with a single-ion anisotropy in transverse magnetic fields, using a continued fraction method based on the Lanczos algorithm. In the Haldane-gap phase and the dimer phase, dynamical structure factors show characteristic field dependence. Possible interpretations are discussed. The numerical results are in qualitative agreement with recent results for inelastic neutron-scattering experiments on the S=1 bond-alternating Heisenberg-chain compound Ni(C9D24N4)(NO2)ClO4\rm{Ni(C_{9}D_{24}N_{4})(NO_{2})ClO_{4}} and the S=1 Haldane-gap compound Ni(C5D14N2)2N3(PF6)\rm{Ni(C_{5}D_{14}N_{2})_{2}N_{3}(PF_{6})} in transverse magnetic fields.Comment: 7 pages, 6 figure

    Pressure dependence of the magnetization in the ferromagnetic superconductor UGe_2

    Full text link
    The recent discovery that superconductivity occurs in several clean itinerant ferromagnets close to low temperature magnetic instabilities naturally invites an interpretation based on a proximity to quantum criticality. Here we report measurements of the pressure dependence of the low temperature magnetisation in one of these materials, UGe_2. Our results show that both of the magnetic transitions observed in this material as a function of pressure are first order transitions and do not therefore correspond to quantum critical points. Further we find that the known pressure dependence of the superconducting transition is not reflected in the pressure dependence of the static susceptibility. This demonstrates that the spectrum of excitations giving superconductivity is not that normally associated with a proximity to quantum criticality in weak itinerant ferromagnets. In contrast our data suggest that instead the pairing spectrum might be related to a sharp spike in the electronic density of states that also drives one of the magnetic transitions.Comment: to appear in Phys. Rev. Let

    Magnetic structure, phase diagram, and a new type of spin-flop transition dominated by higher order interaction in a localized 5f system U3Pd20Si6

    Get PDF
    The magnetic structure of the localized-5f uranium intermetallic compound U3Pd20Si6 has been determined by means of a neutron diffraction experiment. Our data demonstrate that this compound has a collinear coupling of the sublattice ordering of the uranium spins on the 4a and 8c sites. We conclude that higher-order exchange and/or quadrupole interactions are necessary to stabilize this unique collinear structure. We discovered a new type of spin-flop transition against the uniaxial anisotropy induced by this collinear coupling

    Ferromagnetic phases in spin-Fermion systems

    Full text link
    Spin-Fermion systems which obtain their magnetic properties from a system of localized magnetic moments being coupled to conducting electrons are considered. The dynamical degrees of freedom are spin-ss operators of localized spins and spin-1/2 Fermi operators of itinerant electrons. Renormalized spin-wave theory, which accounts for the magnon-magnon interaction, and its extension are developed to describe the two ferrimagnetic phases in the system: low temperature phase 0<T<T0<T<T^{*}, where all electrons contribute the ordered ferromagnetic moment, and high temperature phase T<T<TCT^{*}<T<T_C, where only localized spins form magnetic moment. The magnetization as a function of temperature is calculated. The theoretical predictions are utilize to interpret the experimentally measured magnetization-temperature curves of UGe2UGe_2..Comment: 9 pages, 5 figure

    Specific Heat Study of an S=1/2 Alternating Heisenberg Chain System F_5PNN Under Magnetic Field

    Get PDF
    We have measured the specific heat of an S=1/2 antiferromagnetic alternating Heisenberg chain pentafulorophenyl nitronyl nitroxide under magnetic fields up to H>H_C2. This compound has the field-induced magnetic ordered (FIMO) phase between H_C1 and H_C2. Characteristic behaviors are observed depending on the magnetic field up to above H_C2 outside of the H-T boundary for the FIMO. Temperature and field dependence of the specific heat are qualitatively in good agreement with the theoretical calculation on an S=1/2 two-leg ladder. [Wang et al. Phys. Rev. Lett 84 5399 (2000)] This agreement suggests that the observed behaviors are related with the low-energy excitation in the Tomonaga-Luttinger liquid.Comment: 4pages, 4figures, replaced with revised version accepted to Physical Review Letter

    Specific heat of the S=1S = 1 spin-dimer antiferromagnet Ba3_3Mn2_2O8_8 in high magnetic fields

    Full text link
    We have measured the specific heat of the coupled spin-dimer antiferromagnet Ba3_3Mn2_2O8_8 to 50 mK in temperature and to 29 T in the magnetic field. The experiment extends to the midpoint of the field region (25.9 T H\leq H \leq 32.3 T) of the magnetization plateau at 1/2 of the saturation magnetization, and reveals the presence of three ordered phases in the field region between that of the magnetization plateau and the low-field spin-liquid region. The exponent of the phase boundary with the thermally disordered region is smaller than the theoretical value based on the Bose-Einstein condensation of spin triplets. At zero field and 29 T, the specific-heat data show gapped behaviors characteristic of spin liquids. The zero-field data indicate that the gapped triplet excitations form two levels whose energies differ by nearly a factor of two. At least the lower level is well localized. The data at 29 T reveal that the low-lying excitations at the magnetization plateau are weakly delocalized.Comment: 6 pages, 5 figures, revised versio

    Magnetic Properties of a Pressure-induced Superconductor UGe2_2

    Full text link
    We performed the DC-magnetization and neutron scattering experiments under pressure {\it P} for a pressure-induced superconductor UGe2_2. We found that the magnetic moment is enhanced at a characteristic temperature {\it T}^{*} in the ferromagnetic state, where {\it T}^{*} is smaller than a Curie temperature {\it T}C_{\rm C}. This enhancement becomes remarkable in the vicinity of {\it P}C_{\rm C}^{*} = 1.20 GPa, where {\it T}^{*} becomes 0 K and the superconducting transition temperature {\it T}SC_{\rm SC} shows a maximum. The characteristic temperature {\it T}^{*}, which decreases with increasing pressure, also depends on the magnetic field.Comment: To be published in J.Phys.Soc.Jp
    corecore