3 research outputs found
Investigation of effectiveness of shuffled frog-leaping optimizer in training a convolution neural network
One of the leading algorithms and architectures in deep learning is Convolution Neural Network (CNN). It represents a unique method for image processing, object detection, and classification. CNN has shown to be an efficient approach in the machine learning and computer vision fields. CNN is composed of several filters accompanied by nonlinear functions and pooling layers. It enforces limitations on the weights and interconnections of the neural network to create a good structure for processing spatial and temporal distributed data. A CNN can restrain the numbering of free parameters of the network through its weight-sharing property. However, the training of CNNs is a challenging approach. Some optimization techniques have been recently employed to optimize CNN's weight and biases such as Ant Colony Optimization, Genetic, Harmony Search, and Simulated Annealing. This paper employs the well-known nature-inspired algorithm called Shuffled Frog-Leaping Algorithm (SFLA) for training a classical CNN structure (LeNet-5), which has not been experienced before. The training method is investigated by employing four different datasets. To verify the study, the results are compared with some of the most famous evolutionary trainers: Whale Optimization Algorithm (WO), Bacteria Swarm Foraging Optimization (BFSO), and Ant Colony Optimization (ACO). The outcomes demonstrate that the SFL technique considerably improves the performance of the original LeNet-5 although using this algorithm slightly increases the training computation time. The results also demonstrate that the suggested algorithm presents high accuracy in classification and approximation in its mechanism
A deep learning approach for robust, multi-oriented, and curved text detection
Automatic text localization and segmentation in a normal environment with vertical or curved texts are core elements of numerous tasks comprising the identification of vehicles and self-driving cars, and preparing significant information from real scenes to visually impaired people. Nevertheless, texts in the real environment can be discovered with a high level of angles, profiles, dimensions, and colors which is an arduous process to detect. In this paper, a new framework based on a convolutional neural network (CNN) is introduced to obtain high efficiency in detecting text even in the presence of a complex background. Due to using a new inception layer and an improved ReLU layer, an excellent result is gained to detect text even in the presence of complex backgrounds. At first, four new m.ReLU layers are employed to explore low-level visual features. The new m.ReLU building block and inception layer are optimized to detect vital information maximally. The effect of stacking up inception layers (kernels with the dimension of 3 × 3 or bigger) is explored and it is demonstrated that this strategy is capable of obtaining mostly varying-sized texts further successfully than a linear chain of convolution layers (Conv layers). The suggested text detection algorithm is conducted in four well-known databases, namely ICDAR 2013, ICDAR 2015, ICDAR 2017, and ICDAR 2019. Text detection results on all mentioned databases with the highest recall of 94.2%, precision of 95.6%, and F-score of 94.8% illustrate that the developed strategy outperforms the state-of-the-art frameworks
Nerve optic segmentation in CT images using a deep learning model and at texture descriptor
The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is usedforregion-basedimagequalityenhancement.Then,theLocalDirectionalNumbermethod(LDN)is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients