1,405 research outputs found

    When paying the piper gets the 'wrong' tune : the impact of fixed payments on case management, case trajectories and 'quality' in criminal defence work

    Get PDF
    Do changes to the structure and level of legal aid payments significantly affect the trajectories of criminal cases? Do these changes make a difference to how defence lawyers handle cases, how they negotiate with prosecutors and how clients are advised to plead? In recent years, Scotland has made major changes to the remuneration structures for criminal defence work. This paper reports on a research study examining the impact of one of these changes: the move to 'fixed payments'. It seeks to contribute to international knowledge about the relationship between legal aid payment regimes and criminal case trajectories. Furthermore, are there any important consequences for clients, or, are changes simply absorbed by lawyers, or neutralised by other developments? The paper explains that the objective of the fixed payments policy (to encourage greater 'efficiency' in the criminal process) was contradicted by other consequences, which were unexpected by the architects of the policy

    Numerical Modelling for Process Investigation of a Single Coal Particle Combustion and Gasification

    Get PDF
    Combustion and Gasification are commercial processes of coal utilization, and therefore continuous improvement is needed for these applications. The difference between these processes is the reaction mechanism, in the case of combustion the reaction products are CO2 and H2O, whereas in the case of gasification the products are CO, H2 and CH4. In order to investigate these processes further, a single coal particle model has been developed. The definition of the chemical reactions for each process is key for model development. The developed numerical model simulation uses CFD (Computational Fluid Dynamic) techniques with an Eddy Break Up (EBU) model and a kinetics parameter for controlling the process reaction. The combustion model has been validated and extended to model the gasification process by inclusion of an additional chemical reaction. Finally, it is shown that the single coal particle model could describe single coal particle combustion and gasification. From the result, the difference between single coal particle combustion and gasification can clearly be seen. This simulation model can be considered for further investigation of coal combustion and gasification application processes

    The Mouse Hindbrain As a Model for Studying Embryonic Neurogenesis

    Get PDF
    The mouse embryo forebrain is the most commonly employed system for studying mammalian neurogenesis during development. However, the highly folded forebrain neuroepithelium is not amenable to wholemount analysis to examine organ-wide neurogenesis patterns. Moreover, defining the mechanisms of forebrain neurogenesis is not necessarily predictive of neurogenesis in other parts of the brain; for example, due to the presence of forebrain-specific progenitor subtypes. The mouse hindbrain provides an alternative model for studying embryonic neurogenesis that is amenable to wholemount analysis, as well as tissue sections to observe the spatiotemporal distribution and behavior of neural progenitors. Moreover, it is easily dissected for other downstream applications, such as cell isolation or molecular biology analysis. As the mouse hindbrain can be readily analyzed in the vast number of cell lineage reporter and mutant mouse strains that have become available, it offers a powerful model for studying the cellular and molecular mechanisms of developmental neurogenesis in a mammalian organism. Here, we present a simple and quick method to use the mouse embryo hindbrain for analyzing mammalian neural progenitor cell (NPC) behavior in wholemount preparations and tissue sections

    Cross-talk between blood vessels and neural progenitors in the developing brain

    Get PDF
    The formation of the central nervous system (CNS) involves multiple cellular and molecular interactions between neural progenitor cells (NPCs) and blood vessels to establish extensive and complex neural networks and attract a vascular supply that support their function. In this review, we discuss studies that have performed genetic manipulations of chick, fish and mouse embryos to define the spatiotemporal roles of molecules that mediate the reciprocal regulation of NPCs and blood vessels. These experiments have highlighted core functions of NPC-expressed ligands in initiating vascular growth into and within the neural tube as well as establishing the blood-brain barrier. More recent findings have also revealed indispensable roles of blood vessels in regulating NPC expansion and eventual differentiation, and specific regional differences in the effect of angiocrine signals. Accordingly, NPCs initially stimulate blood vessel growth and maturation to nourish the brain, but blood vessels subsequently also regulate NPC behaviour to promote the formation of a sufficient number and diversity of neural cells. A greater understanding of the molecular cross-talk between NPCs and blood vessels will improve our knowledge of how the vertebrate nervous system forms and likely help in the design of novel therapies aimed at regenerating neurons and neural vasculature following CNS disease or injury

    Yukawa Coupling Unification in Supersymmetric Models

    Get PDF
    We present an updated assessment of the viability of t-b-tau Yukawa coupling unification in supersymmetric models. For the superpotential Higgs mass parameter mu>0, we find unification to less than 1% is possible, but only for GUT scale scalar mass parameter m_{16}~8-20 TeV, and small values of gaugino mass m_{1/2}<400 GeV. Such models require that a GUT scale mass splitting exists amongst Higgs scalars with m_{H_u}^2<m_{H_d}^2. Viable solutions lead to a radiatively generated inverted scalar mass hierarchy, with third generation and Higgs scalars being lighter than other sfermions. These models have very heavy sfermions, so that unwanted flavor changing and CP violating SUSY processes are suppressed, but may suffer from some fine-tuning requirements. While the generated spectra satisfy b->s gamma and (g-2)_mu constraints, there exists tension with the dark matter relic density unless m_{16}<3 TeV. These models offer prospects for a SUSY discovery at the Fermilab Tevatron collider via the search for chargino_1 neutralino_2 -> 3 leptons events, or via gluino pair production. If mu<0, Yukawa coupling unification to less than 5% can occur for m_{16} and m_{1/2}>1-2 TeV. Consistency of negative mu Yukawa unified models with b->s gamma, (g-2)_mu, and relic density all imply very large values of m_{1/2} typically greater than about 2.5 TeV, in which case direct detection of sparticles may be a challenge even at the LHC.Comment: 38 pages, 15 figures. Fig.15 changed, some references were added. A copy of the paper with better resolution figures can be found at http://www.hep.fsu.edu/~balazs/Physics/Papers/2003

    Process Capability Database Usage In Industry: Myth vs. Reality

    Get PDF
    Process capability data (PCD) is needed for robust design, optimal tolerance allocation, and variation simulation analysis. Process capability databases (PCDBs) have been developed in many industries and are being used by the manufacturing community to monitor quality; however, they are not being effectively utilized by design. When the PCDBs1 were developed, the intent was for design to use PCD for optimization and product cost minimization, but this ideal situation has not been realized. A survey of a variety of design and manufacturing companies was circulated to determine both the state-ofthe- art in PCDBs and the barriers preventing design from fully utilizing PCD. Two key barriers were identified for internal PCDBs: lack of a company-wide vision for PCD usage and poor communication between manufacturing and design. Supplier PCDBs have the additional barriers of lack of trust between suppliers and customers and time lag for data entry. Management support, training, database population, and common systems were identified as potential solutions to the identified barriers

    Social Enterprise Logic and the Sustainability of Community Networks in Sub-Sahara Africa: Lessons from the Zaria Community Network in Nigeria

    Get PDF
    There are conflicting views about how social enterprise logic impacts community networks’ sustainability (CNs). Some authors believe that running with the social enterprise logic spells doom on CNs. Conversely, some believe that it does not necessarily spell doom on CNs. However, CNs, particularly those implemented in sub-Saharan Africa, cannot be implemented with an alternative logic, such as the for-profit business logic. Consequently, there is a need to develop a framework for making CNs sustainable, although they run with the social enterprise logic. This research develops a framework that will enable those involved in CN implementation in sub-Saharan Africa to understand how to instil sustainability factors into every stage of CN implementation. The study uses the Zaria Community Network (ZCN), Zaria, Nigeria, as a case study and adopts the inductive approach. The study data were derived from the chat messages from a WhatsApp group used as a platform for communication by those implementing the ZCN and from secondary sources. The study findings revealed that sustainable participation was a primary factor that comes to bear in the sustainability of the ZCN. It also revealed how sustainable participation influences sustainable infrastructure, sustainable stakeholders’ support, and sustainable funding. We conclude that the framework helps implement sustainable CNs in sub-Saharan Africa and other regions with similar socio-technical similarities

    Investigation of coal particle gasification processes with application leading to underground coal gasification

    Get PDF
    A coal particle model is developed to investigate the thermochemical processes of gasification for underground coal applications. The chemical reactions are defined with an Eddy Break up (EBU) model for controlling the reaction mechanisms and the study is particularly focused on identification of the important kinetic parameters, which control the consumption rate of coal mass. As an initial validation, the coal particle oxidation based on the experimental results is used for comparison. The gasification reactions are subsequently applied for the thermochemical process investigation, and the results show that the best agreement of coal oxidation is achieved by the pre-exponent factor (A) of 0.002 and 85500, for the reactions, R2 (C + O2 = CO2) and R3 (C + 0.5O2 = CO), respectively. The kinetic parameters for the gasification process of coal particle leading to the syngas production are also optimised. The results show that the production of H2 and CO is controlled significantly by the level of oxygen concentration in the char reactions. However, their chemical rates are strongly dependent upon the reaction zones. For example, CO is produced in both oxidation and reduction reaction zones, while H2 production is dominated in the reduction zone. Spatio-temporal distributions of the gas species along with the coal particle temperature provide additional information for further development of UCG modelling. Ultimately, the model gives a good guideline with the associated thermochemical processes that can help developing advanced coal gasification technology and lead to improved syngas quality
    • 

    corecore