9 research outputs found

    Clinical Trial Design and Development Work Group within the Quantitative Imaging Network

    Get PDF
    The Clinical Trial Design and Development Working Group within the Quantitative Imaging Network focuses on providing support for the development, validation, and harmonization of quantitative imaging (QI) methods and tools for use in cancer clinical trials. In the past 10 years, the Group has been working in several areas to identify challenges and opportunities in clinical trials involving QI and radiation oncology. The Group has been working with Quantitative Imaging Network members and the Quantitative Imaging Biomarkers Alliance leadership to develop guidelines for standardizing the reporting of quantitative imaging. As a validation platform, the Group led a multireader study to test a semi-automated positron emission tomography quantification software. Clinical translation of QI tools cannot be possible without a continuing dialogue with clinical users. This article also highlights the outreach activities extended to cooperative groups and other organizations that promote the use of QI tools to support clinical decisions

    QIN Benchmarks for Clinical Translation of Quantitative Imaging Tools

    No full text
    The Quantitative Imaging Network of the National Cancer Institute is in its 10th year of operation, and research teams within the network are developing and validating clinical decision support software tools to measure or predict the response of cancers to various therapies. As projects progress from development activities to validation of quantitative imaging tools and methods, it is important to evaluate the performance and clinical readiness of the tools before committing them to prospective clinical trials. A variety of tests, including special challenges and tool benchmarking, have been instituted within the network to prepare the quantitative imaging tools for service in clinical trials. This article highlights the benchmarking process and provides a current evaluation of several tools in their transition from development to validation

    The Painful Derivation of the Refractive Index from Microscopical Considerations

    No full text
    The derivation of the refractive index from the microscopical structure of matter is analysed in detail. In particular the many various assumptions leading to the basic Clausius-Mosotti (Lorentz-Lorenz) equation are carefully stated. The most general formulation of the second order correlation theory for the refractive index, the so-called Yvon-Kirkwood theory, is given. These considerations will facilitate the explanation of a very peculiar effect observed by Amat

    Clinical Trial Design and Development Work Group Within the Quantitative Imaging Network

    No full text
    The Clinical Trial Design and Development Working Group within the Quantitative Imaging Network focuses on providing support for the development, validation, and harmonization of quantitative imaging (QI) methods and tools for use in cancer clinical trials. In the past 10 years, the Group has been working in several areas to identify challenges and opportunities in clinical trials involving QI and radiation oncology. The Group has been working with Quantitative Imaging Network members and the Quantitative Imaging Biomarkers Alliance leadership to develop guidelines for standardizing the reporting of quantitative imaging. As a validation platform, the Group led a multireader study to test a semi-automated positron emission tomography quantification software. Clinical translation of QI tools cannot be possible without a continuing dialogue with clinical users. This article also highlights the outreach activities extended to cooperative groups and other organizations that promote the use of QI tools to support clinical decisions
    corecore