1,035 research outputs found
Probabilistic Spectral Sparsification In Sublinear Time
In this paper, we introduce a variant of spectral sparsification, called
probabilistic -spectral sparsification. Roughly speaking,
it preserves the cut value of any cut with an
multiplicative error and a additive error. We show how
to produce a probabilistic -spectral sparsifier with
edges in time
time for unweighted undirected graph. This gives fastest known sub-linear time
algorithms for different cut problems on unweighted undirected graph such as
- An time -approximation
algorithm for the sparsest cut problem and the balanced separator problem.
- A time approximation minimum s-t cut algorithm
with an additive error
An SDP-Based Algorithm for Linear-Sized Spectral Sparsification
For any undirected and weighted graph with vertices and
edges, we call a sparse subgraph of , with proper reweighting of the
edges, a -spectral sparsifier if holds for any , where and
are the respective Laplacian matrices of and . Noticing that
time is needed for any algorithm to construct a spectral sparsifier and a
spectral sparsifier of requires edges, a natural question is to
investigate, for any constant , if a -spectral
sparsifier of with edges can be constructed in time,
where the notation suppresses polylogarithmic factors. All previous
constructions on spectral sparsification require either super-linear number of
edges or time.
In this work we answer this question affirmatively by presenting an algorithm
that, for any undirected graph and , outputs a
-spectral sparsifier of with edges in
time. Our algorithm is based on three novel
techniques: (1) a new potential function which is much easier to compute yet
has similar guarantees as the potential functions used in previous references;
(2) an efficient reduction from a two-sided spectral sparsifier to a one-sided
spectral sparsifier; (3) constructing a one-sided spectral sparsifier by a
semi-definite program.Comment: To appear at STOC'1
Constructing Linear-Sized Spectral Sparsification in Almost-Linear Time
We present the first almost-linear time algorithm for constructing
linear-sized spectral sparsification for graphs. This improves all previous
constructions of linear-sized spectral sparsification, which requires
time.
A key ingredient in our algorithm is a novel combination of two techniques
used in literature for constructing spectral sparsification: Random sampling by
effective resistance, and adaptive constructions based on barrier functions.Comment: 22 pages. A preliminary version of this paper is to appear in
proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2015
Universal Barrier is -Self-Concordant
This paper shows that the self-concordance parameter of the universal barrier
on any -dimensional proper convex domain is upper bounded by . This bound
is tight and improves the previous bound by Nesterov and Nemirovski. The
key to our main result is a pair of new, sharp moment inequalities for
-concave distributions, which could be of independent interest
- …