12 research outputs found

    Osteoinductive Treatment Methods for Implant Surfaces Exposed to Peri-implantitis

    Get PDF
    Wismeyer, D. [Promotor]Liu, Y. [Copromotor

    Cleaning and modification of intraorally contaminated titanium discs with calcium phosphate powder abrasive treatment

    No full text
    Objective The aim of this study was to evaluate the cleaning efficiency on intraorally contaminated titanium discs by using calcium phosphate and air powder abrasive (APA) treatment. The modification of titanium surface (SLA) was evaluated and compared with the conventional air powder abrasive methods and phosphoric acid. This treatment modality might give new perspectives for peri-implant surface treatment. Materials and Methods A total of 36 SLA surface titanium discs were kept in the human mouth for 48 h by 14 volunteers. The intraorally contaminated discs were stained with erythrosine dye to make the biofilm visible. Discs were randomly assigned to one of the six groups: APA without powder-only water and air (Control). APA with Hydroxylapatite (HA). APA with Hydroxylapatite and Calcium Phosphate (HA + TCP). APA with Titanium Dioxide (TiO2). APA with EMS Soft Subgingival powder (EMS). Phosphoric Acid. Light microscope photos were taken during the treatment. Following the cleaning, the residual biofilm, surface changes, and surface chemical content were evaluated using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). A systematic random sampling protocol and a point counting method were applied for the quantitative evaluation of the remaining biofilm. Multiple comparisons within and between groups are performed by Kruskall Wallis test and if significant Mann-Whitney U-test as post hoc testing is applied. The significance level was P < 0.05. Results All methods with the exception of phosphoric acid could decrease the initial amount of biofilm significantly. Among all air powder abrasive treatments, the HA + TCP group showed the best results with 99% biofilm removal, followed by HA and EMS powders. The cleaning method caused minimal changes to the surface structure. With the exception of the control group, all air powder applications caused sharp edges around the grooves in the implant surface to be rounded. TiO2 powder caused less change than HA and HA + TCP. Phosphoric acid did not cause a visible surface change on the SEM photos. Powder particles remnants were observed on and impacted in the titanium surface. In the HA and HA + TCP group, a Ca content was observed varying between 2% and 5%. In the control group, saliva and biofilm-related elements were observed. Conclusions Using the air powder abrasive method with calcium phosphate powders on contaminated titanium discs, an efficient implant cleaning and surface modification can be achieved. This method should be further improved as it has possible potential to be used as an implant surface treatment method for implants involved with peri-implantitis

    Air powder abrasive treatment as an implant surface cleaning method: a literature review

    No full text
    OBJECTIVE: To evaluate the air powder abrasive treatment as an implant surface cleaning method for peri-implantitis based on the existing literature. MATERIALS AND METHODS: A PubMed search was conducted to find articles that reported on air powder abrasive treatment as an implant surface cleaning method for peri-implantitis. The studies evaluated cleaning efficiency and surface change as a result of the method. Furthermore, cell response toward the air powder abrasive-treated discs, reosseointegration, and clinical outcome after treatment is also reported. RESULTS: The PubMed search resulted in 27 articles meeting the inclusion criteria. In vitro cleaning efficiency of the method is reported to be high. The method resulted in minor surface changes on titanium specimens. Although the air powder abrasive-treated specimens showed sufficient levels of cell attachment and cell viability, the cell response decreased compared with sterile discs. Considerable reosseointegration between 39% and 46% and improved clinical parameters were reported after treatment when applied in combination with surgical treatment. The results of the treatment are influenced by the powder type used, the application time, and whether powder was applied surgically or nonsurgically. CONCLUSION: The in vivo data on air powder abrasive treatment as an implant surface cleaning method is not sufficient to draw definitive conclusions. However, in vitro results allow the clinician to consider the method as a promising option for implant surface cleaning in peri-implantitis treatment

    Air powder abrasive treatment as an implant surface cleaning method: a literature review

    No full text
    OBJECTIVE: To evaluate the air powder abrasive treatment as an implant surface cleaning method for peri-implantitis based on the existing literature. MATERIALS AND METHODS: A PubMed search was conducted to find articles that reported on air powder abrasive treatment as an implant surface cleaning method for peri-implantitis. The studies evaluated cleaning efficiency and surface change as a result of the method. Furthermore, cell response toward the air powder abrasive-treated discs, reosseointegration, and clinical outcome after treatment is also reported. RESULTS: The PubMed search resulted in 27 articles meeting the inclusion criteria. In vitro cleaning efficiency of the method is reported to be high. The method resulted in minor surface changes on titanium specimens. Although the air powder abrasive-treated specimens showed sufficient levels of cell attachment and cell viability, the cell response decreased compared with sterile discs. Considerable reosseointegration between 39% and 46% and improved clinical parameters were reported after treatment when applied in combination with surgical treatment. The results of the treatment are influenced by the powder type used, the application time, and whether powder was applied surgically or nonsurgically. CONCLUSION: The in vivo data on air powder abrasive treatment as an implant surface cleaning method is not sufficient to draw definitive conclusions. However, in vitro results allow the clinician to consider the method as a promising option for implant surface cleaning in peri-implantitis treatment

    Parameters That Improve Cleaning Efficiency of Subgingival Air Polishing on Titanium Implant Surfaces:An In Vitro Study

    No full text
    Background: This study aims to reveal how air polishing behaves on a titanium surface by evaluating the size and shape of the cleaned area and the influence of different device settings, probing depths, and cleaning movements. Methods: Forty-eight titanium sandblasted large-grit acidetched surface film-coated disks were treated with an air abrasive system using a subgingival plastic nozzle. Two subgingival models were used: open-ended (step 1) and defined-size (step 2). In step 1, the most effective parameters were investigated by 5-second static applications under different settings. In step 2, the best settings were used for dynamic application to test influence of different movements (up-down, slowly up, rotation). For both steps, powder and water consumption and total cleaned area were calculated. Results: Air pressure was the main factor with the strongest effect on cleaning. Increasing air pressure extended cleaning area. Other factors, such as nozzle depth and excessive powder flow amount, had weak influence. Cleaning effect reached deeper than the nozzle physically reached. Step 2 showed that there was no significant difference between different nozzle movements; however, cleaning efficiency decreased significantly without movement. Conclusions: For the most effective clinical use of air polishing, it should be applied with high pressure, deep insertion of nozzle, and enough water flow. Additionally, the nozzle has to be moved to get the best cleaning effect
    corecore