7 research outputs found
Evaluating anaphora and coreference resolution to improve automatic keyphrase extraction
In this paper we analyze the effectiveness of using linguistic knowledge from coreference and
anaphora resolution for improving the performance for supervised keyphrase extraction. In order
to verify the impact of these features, we de\ufb01ne a baseline keyphrase extraction system and
evaluate its performance on a standard dataset using different machine learning algorithms. Then,
we consider new sets of features by adding combinations of the linguistic features we propose
and we evaluate the new performance of the system. We also use anaphora and coreference
resolution to transform the documents, trying to simulate the cohesion process performed by the
human mind. We found that our approach has a slightly positive impact on the performance of
automatic keyphrase extraction, in particular when considering the ranking of the results
Neurological, psychological, and cognitive disorders in patients with chronic kidney disease on conservative and replacement therapy
Chronic kidney disease (CKD) is a highly prevalent condition in the world. Neurological, psychological, and cognitive disorders, related to CKD, could contribute to the morbidity, mortality, and poor quality of life of these patients. The aim of this study was to assess the neurological, psychological, and cognitive imbalance in patients with CKD on conservative and replacement therapy. Seventy-four clinically stable patients affected by CKD on conservative therapy, replacement therapy (hemodialysis (HD), peritoneal dialysis (PD)), or with kidney transplantation (KT) and 25 healthy controls (HC), matched for age and sex were enrolled. Clinical, laboratory, and instrumental examinations, as renal function, inflammation and mineral metabolism indexes, electroencephalogram (EEG), psychological (MMPI-2, Sat P), and cognitive tests (neuropsychological tests, NPZ5) were carried out. The results showed a significant differences in the absolute and relative power of delta band and relative power of theta band of EEG (P=0.008, P<0.001, P=0.051), a positive correlation between relative power of delta band and C-reactive protein (CRP) (P< 0.001) and a negative correlation between estimated glomerular filtration rate (eGFR) (P<0.001) and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) (P<0.001), in all the samples. Qualitative analysis of EEG showed alterations of Grade 2 (according to Parsons-Smith classification) in patients on conservative therapy, and Grade 2-3 in KT patients. The scales of MMPI-2 hysteria and paranoia, are significantly correlated with creatinine, eGFR, serum nitrogen, CRP, 1,25-(OH)2D3, intact parathyroid hormone (iPTH), phosphorus, and cynical and hysterical personality, are correlated with higher relative power of delta (P=0.016) and theta band (P= 0.016). Moreover, all NPZ5 scores showed a significant difference between the means of nephropathic patients and the means of the HC, and a positive correlation with eGFR, serum nitrogen, CRP, iPTH, and vitamin D. In CKD patients, simple and noninvasive instruments, as EEG, and cognitive-psychological tests, should be performed and careful and constant monitoring of renal risk factors, probably involved in neuropsychological complications (inflammation, disorders of mineral metabolism, electrolyte disorders, etc.), should be carried out. Early identification and adequate therapy of neuropsychological, and cognitive disorders, might enable a better quality of life and a major compliance with a probable reduction in the healthcare costs
How Blue Light Activates Furocoumarin Derivatives Triggering Tumor Cell Apoptosis
Furocoumarins comprise natural and synthetic compounds: linear molecules, so called psoralens, and the angular ones, the angelicins. The photobiological effects of furocoumarins plus UVA are mainly related to their capacity to bind DNA and form monoadducts (MAs) and interstrand crosslinks (XLs), mainly with pyrimidine bases. Furthermore, furocoumarins produce ROS that impair cellular functions through lipid peroxidation, oxidation of guanine and strand breaks in nucleic acids, oxidation of proteins and inactivation of enzymes. It is known that the combination of 8-MOP and UVA radiation causes apoptosis of treated leucocytes and may cause preferential apoptosis of activated or abnormal T cells. Moreover, these apoptotic cells may promote immune tolerance, production of antigen-specific regulatory lymphocytes (CD4/8 T, B) and rebalance of immune system. Even though furocoumarins possess high chemotherapeutic potency under UVA and lack toxicity in the dark, genotoxicity, mutagenicity and skin phototoxicity have been observed. 8-MOP was found to photoreact under blue light (BL), leading to less mutagenic lesions in the DNA, that is preferentially MAs over XLs. Furthermore, cells treated with 419 nm light resumed normal growth rates faster than cells which received the same UVA dose
4,6,4′-Trimethylangelicin Photoactivated by Blue Light Might Represent an Interesting Option for Photochemotherapy of Non-Invasive Bladder Carcinoma: An In Vitro Study on T24 Cells
Photodynamic therapy (PDT) is frequently used to treat non-muscle invasive bladder cancer due its low toxicity and high selectivity. Since recurrence often occurs, alternative approaches and/or designs of combined therapies to improve PDT effectiveness are needed. This work aimed to evaluate the cytotoxicity of 4,6,4′-trimethylangelicin (TMA) photoactivated by blue light (BL) on human bladder cancer T24 cells and investigate the mechanisms underlying its biological effects. TMA/BL exerted antiproliferative activity through the induction of apoptosis without genotoxicity, as demonstrated by the expression levels of phospho-H2AX, an indicator of DNA double-stranded breaks. It also modulated the Wnt canonical signal pathway by increasing the phospho-β-catenin and decreasing the nuclear levels of β-catenin. The inhibition of this pathway was due to the modulation of the GSK3β phosphorylation state (Tyr 216) that induces a proteasomal degradation of β-catenin. Indeed, a partial recovery of nuclear β-catenin expression and reduction of its phosphorylated form after treatment with LiCl were detected. As demonstrated by RT-PCR and cytofluorimetric analysis, TMA/BL also decreased the expression of CD44v6, a marker of cancer stem cells. Taken together, our data suggest that TMA photoactivated by BL may represent an interesting option for the photochemotherapy of noninvasive bladder carcinomas, since this treatment is able to inhibit key pathways for tumour growth and progression in the absence of genotoxic effects
4,6,4′-Trimethylangelicin Photoactivated by Blue Light Might Represent an Interesting Option for Photochemotherapy of Non-Invasive Bladder Carcinoma: An In Vitro Study on T24 Cells
Photodynamic therapy (PDT) is frequently used to treat non-muscle invasive bladder cancer due its low toxicity and high selectivity. Since recurrence often occurs, alternative approaches and/or designs of combined therapies to improve PDT effectiveness are needed. This work aimed to evaluate the cytotoxicity of 4,6,4′-trimethylangelicin (TMA) photoactivated by blue light (BL) on human bladder cancer T24 cells and investigate the mechanisms underlying its biological effects. TMA/BL exerted antiproliferative activity through the induction of apoptosis without genotoxicity, as demonstrated by the expression levels of phospho-H2AX, an indicator of DNA double-stranded breaks. It also modulated the Wnt canonical signal pathway by increasing the phospho-β-catenin and decreasing the nuclear levels of β-catenin. The inhibition of this pathway was due to the modulation of the GSK3β phosphorylation state (Tyr 216) that induces a proteasomal degradation of β-catenin. Indeed, a partial recovery of nuclear β-catenin expression and reduction of its phosphorylated form after treatment with LiCl were detected. As demonstrated by RT-PCR and cytofluorimetric analysis, TMA/BL also decreased the expression of CD44v6, a marker of cancer stem cells. Taken together, our data suggest that TMA photoactivated by BL may represent an interesting option for the photochemotherapy of noninvasive bladder carcinomas, since this treatment is able to inhibit key pathways for tumour growth and progression in the absence of genotoxic effects
Antiproliferative activity of 8-methoxypsoralen on DU145 prostate cancer cells under UVA and blue light
The use of photoactivatable 8-methoxypsoralen (8-MOP) as potential focal treatment towards prostate cancer cells is proposed here. Our results, obtained on isolated DNA and DU145 cells, indicate that blue light, besides UVA, is able to activate 8-MOP. When compared to UVA, blue light irradiation led to a modulation of the extent and the types of 8-MOP-DNA damage, specially cross-links, coupled to a still valuable antiproliferative effect. Our data suggest that the proapototic activity of 8-MOP is related not only to DNA damage and reactive oxygen species generation but also to the modulation of cell signalling pathways. In particular, a different activation of p38 and p44/42 mitogen-activated protein kinases was detected depending on the light wavelengths
Prognostic Role of Soluble and Extracellular Vesicle-Associated PD-L1, B7-H3 and B7-H4 in Non-Small Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors
The treatment of non-small cell lung cancer (NSCLC) has changed dramatically with the advent of immune checkpoint inhibitors (ICIs). Despite encouraging results, their efficacy remains limited to a subgroup of patients. Circulating immune checkpoints in soluble (s) form and associated with extracellular vesicles (EVs) represent promising markers, especially in ICI-based therapeutic settings. We evaluated the prognostic role of PD-L1 and of two B7 family members (B7-H3, B7-H4), both soluble and EV-associated, in a cohort of advanced NSCLC patients treated with first- (n = 56) or second-line (n = 126) ICIs. In treatment-naïve patients, high baseline concentrations of sPD-L1 (>24.2 pg/mL) were linked to worse survival, whereas high levels of sB7-H3 (>0.5 ng/mL) and sB7-H4 (>63.9 pg/mL) were associated with better outcomes. EV characterization confirmed the presence of EVs positive for PD-L1 and B7-H3, while only a small portion of EVs expressed B7-H4. The comparison between biomarker levels at the baseline and in the first radiological assessment under ICI-based treatment showed a significant decrease in EV-PD-L1 and an increase in EV-B7H3 in patients in the disease response to ICIs. Our study shows that sPD-L1, sB7-H3 and sB7-H4 levels are emerging prognostic markers in patients with advanced NSCLC treated with ICIs and suggests potential EV involvement in the disease response to ICIs