415 research outputs found

    Electron-Hole Asymmetry in GdBaCo_{2}O_{5+x}: Evidence for Spin Blockade of Electron Transport in a Correlated Electron System

    Full text link
    In RBaCo_{2}O_{5+x} compounds (R is rare earth) variability of the oxygen content allows precise doping of CoO_2 planes with both types of charge carriers. We study transport properties of doped GdBaCo_{2}O_{5+x} single crystals and find a remarkable asymmetry in the behavior of holes and electrons doped into a parent insulator GdBaCo_{2}O_{5.5}. Doping dependences of resistivity, Hall response, and thermoelectric power reveal that the doped holes greatly improve the conductivity, while the electron-doped samples always remain poorly conducting. This doping asymmetry provides strong evidence for a spin blockade of the electron transport in RBaCo_{2}O_{5+x}.Comment: 4 pages, 5 figures, accepted for publication in PR

    Ising-like Spin Anisotropy and Competing Antiferromagnetic - Ferromagnetic Orders in GdBaCo_{2}O_{5.5} Single Crystals

    Full text link
    In RBaCo_{2}O_{5+x} compounds (R is rare earth), a ferromagnetic-antiferromagnetic competition is accompanied by a giant magnetoresistance. We study the magnetization of detwinned GdBaCo_{2}O_{5.5} single crystals, and find a remarkable uniaxial anisotropy of Co^{3+} spins which is tightly linked with the chain oxygen ordering in GdO_{0.5} planes. Reflecting the underlying oxygen order, CoO_2 planes also develop a spin-state order consisting of Co^{3+} ions in alternating rows of S=1 and S=0 states. The magnetic structure appears to be composed of weakly coupled ferromagnetic ladders with Ising-like moments, which gives a simple picture for magnetotransport phenomena.Comment: 5 pages, 4 figures, accepted to Phys.Rev.Let

    Origin of the large thermoelectric power in oxygen-variable RBaCo_{2}O_{5+x} (R=Gd, Nd)

    Full text link
    Thermoelectric properties of GdBaCo_{2}O_{5+x} and NdBaCo_{2}O_{5+x} single crystals have been studied upon continuous doping of CoO_2 planes with either electrons or holes. The thermoelectric response and the resistivity behavior reveal a hopping character of the transport in both compounds, providing the basis for understanding the recently found remarkable divergence of the Seebeck coefficient at x=0.5. The doping dependence of the thermoelectric power evinces that the configurational entropy of charge carriers, enhanced by their spin and orbital degeneracy, plays a key role in the origin of the large thermoelectric response in these correlated oxides.Comment: 5 pages, 4 figures, accepted for publication in PR

    Large magnetothermal conductivity in GdBaCo_{2}O_{5+x} single crystals

    Full text link
    To study the effects of paramagnetic spins on phonons, both the in-plane and the c-axis heat transport of GdBaCo_{2}O_{5+x} (GBCO) single crystals are measured at low temperature down to 0.36 K and in magnetic field up to 16 T. It is found that the phonon heat transport is very strongly affected by the magnetic field and nearly 5 times increase of the thermal conductivity in several Tesla field is observed at 0.36 K. It appears that phonons are resonantly scattered by paramagnetic spins in zero field and the application of magnetic field removes such strong scattering, but the detailed mechanism is to be elucidated.Comment: 5 pages, 5 figures, accepted for publication in Phys. Rev.

    Transport and magnetic properties of GdBaCo_{2}O_{5+x} single crystals: A cobalt oxide with square-lattice CoO_2 planes over a wide range of electron and hole doping

    Full text link
    Single crystals of the layered perovskite GdBaCo_{2}O_{5+x} (GBCO) have been grown by the floating-zone method, and their transport, magnetic, and structural properties have been studied in detail over a wide range of oxygen contents. The obtained data are used to establish a rich phase diagram centered at the "parent'' compound GdBaCo_{2}O_{5.5} -- an insulator with Co ions in the 3+ state. An attractive feature of GBCO is that it allows a precise and continuous doping of CoO_{2} planes with either electrons or holes, spanning a wide range from the charge-ordered insulator at 50% electron doping (x=0) to the undoped band insulator (x=0.5), and further towards the heavily hole-doped metallic state. This continuous doping is clearly manifested in the behavior of thermoelectric power which exhibits a spectacular divergence with approaching x=0.5, where it reaches large absolute values and abruptly changes its sign. At low temperatures, the homogeneous distribution of doped carriers in GBCO becomes unstable, and both the magnetic and transport properties point to an intriguing nanoscopic phase separation. We also find that throughout the composition range the magnetic behavior in GBCO is governed by a delicate balance between ferromagnetic (FM) and antiferromagnetic (AF) interactions, which can be easily affected by temperature, doping, or magnetic field, bringing about FM-AF transitions and a giant magnetoresistance (MR) phenomenon. An exceptionally strong uniaxial anisotropy of the Co spins, which dramatically simplifies the possible spin arrangements, together with the possibility of continuous ambipolar doping turn GBCO into a model system for studying the competing magnetic interactions, nanoscopic phase separation and accompanying magnetoresistance phenomena.Comment: 31 pages, 32 figures, submitted to Phys. Rev.

    Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se

    Full text link
    Topological insulators are predicted to present novel surface transport phenomena, but their experimental studies have been hindered by a metallic bulk conduction that overwhelms the surface transport. We show that a new topological insulator, Bi2Te2Se, presents a high resistivity exceeding 1 Ohm-cm and a variable-range hopping behavior, and yet presents Shubnikov-de Haas oscillations coming from the surface Dirac fermions. Furthermore, we have been able to clarify both the bulk and surface transport channels, establishing a comprehensive understanding of the transport in this material. Our results demonstrate that Bi2Te2Se is the best material to date for studying the surface quantum transport in a topological insulator.Comment: 4 pages, 3 figure

    Landau level spectroscopy of surface states in the topological insulator Bi0.91_{0.91}Sb0.09_{0.09} via magneto-optics

    Full text link
    We have performed broad-band zero-field and magneto-infrared spectroscopy of the three dimensional topological insulator Bi0.91_{0.91}Sb0.09_{0.09}. The zero-field results allow us to measure the value of the direct band gap between the conducting LaL_a and valence LsL_s bands. Under applied field in the Faraday geometry (\emph{k} || \emph{H} || C1), we measured the presence of a multitude of Landau level (LL) transitions, all with frequency dependence ωH\omega \propto \sqrt{H}. We discuss the ramification of this observation for the surface and bulk properties of topological insulators.Comment: 7 pages, 8 figures, March Meeting 2011 Abstract: J35.0000

    On the effects of viscoelasticity in stirred tanks

    Get PDF
    Mixing viscoelastic fluids is common to many chemical and biochemical process industries where the rheological properties of the bulk change considerably over the time course. The objectives of this study were to investigate the effects of viscoelasticity in mechanically agitated vessels (on: i- the power consumption and flow patterns in single phase and gassed systems, ii- mixing time under unaerated conditions and iii- cavities in the presence of gas) and to study the performance of InterMIGs in comparison to the classical six bladed disc turbines. Model viscoelastic fluids prepared exhibited only slight shear thinning properties (Boger fluid type), hence the effects of viscoelasticity could be studied in the absence of other rheological properties. Results obtained with these fluids were compared to those with viscous Newtonian glycerol covering the transitional flow regime (50< Re< 1000). Additionally, some work was also conducted in water for a preliminary characterisation of InterMIGs. In the relatively low range of Elasticity numbers (El < 3.5 x 10^-3^3) covered, secondary flow patterns were not reversed. The power drawn under unaerated conditions was higher in viscoelastic fluids (at a given Reynolds number) for both impeller types that had to compete with mutually opposing viscoelastic forces. An experimental set-up to measure mixing times in viscous fluids (using the fluorescent dye-fibre optic technique) was installed. Reduced secondary circulations in viscoelastic fluids resulted in longer mixing times. Power consumption under aeration was also higher in viscoelastic fluids than that in Newtonian glycerol. Different from the findings under unaerated conditions, this enhancement was independent of the level of viscoelasticity. Cavities, hence the power drawn under aeration, were in general stable with respect to the variations in the gas flow rate in viscous fluids. This stability was found to be accentuated by viscoelasticity. InterMIGs underwent viscoelastic effects more severely on account of the complicated interaction of the viscoelastically driven flows with the flows associated with the inner and outer blades of these impellers. They presented a better choice in low and high viscosity Newtonian fluids and their performance was comparable to that of a single Rushton turbine in viscoelastic fluids

    Revealing puddles of electrons and holes in compensated topological insulators

    Full text link
    Three-dimensional topological insulators harbour metallic surface states with exotic properties. In transport or optics, these properties are typically masked by defect-induced bulk carriers. Compensation of donors and acceptors reduces the carrier density, but the bulk resistivity remains disappointingly small. We show that measurements of the optical conductivity in BiSbTeSe2_2 pinpoint the presence of electron-hole puddles in the bulk at low temperatures, which is essential for understanding DC bulk transport. The puddles arise from large fluctuations of the Coulomb potential of donors and acceptors, even in the case of full compensation. Surprisingly, the number of carriers appearing within puddles drops rapidly with increasing temperature and almost vanishes around 40 K. Monte Carlo simulations show that a highly non-linear screening effect arising from thermally activated carriers destroys the puddles at a temperature scale set by the Coulomb interaction between neighbouring dopants, explaining the experimental observation semi-quantitatively. This mechanism remains valid if donors and acceptors do not compensate perfectly.Comment: 11 pages with 7 figures plus supplemental material (3 pages

    Numerical and experimental investigation of static shaft Wankel expander for compressed-air energy storage

    Get PDF
    Compressed air energy storage (CAES) is a promising technology for storing mechanical and electrical energy using the gas power cycle. The expansion device is a critical component of the CAES that determines the overall performance of the system. Standard Wankel expander (SWE) is one of the volumetric expanders which has several advantages including low vibration, ability to produce high power output, low manufacturing cost and less moving parts. However, SWE requires valves for timing the inlet and outlet flow and a balancing system to ensure reliable operation. Static shaft Wankel expander (SSWE) is an attractive solution to enable valves’ removal and the need for balancing system. This paper presents a detailed experimental and numerical investigation of an SSWE performance at various operating pressures and temperatures for CAES application. An advanced computational fluid dynamic simulation model taking into account the dynamic motion of the SSWE and utilising real gas air properties. A compressed air test rig was constructed and instrumented with temperature, flow rate, pressure and torque sensors. Experimental testing at temperatures 20 °C to 80 °C and pressures of 1.5 bara to 3 bara was conducted and compared to the CFD simulations results. Correlations were developed for the friction power loss. Experimental results showed that the developed SSWE can produce power output of 504 W at 80 °C and 3 bara and its isentropic efficiency reached 71 % at 60 °C and 2 bara.<br/
    corecore