2 research outputs found

    Ground state of an S=1/2S=1/2 distorted diamond chain - model of Cu3Cl6(H2O)2β‹…2H8C4SO2\rm Cu_3 Cl_6 (H_2 O)_2 \cdot 2H_8 C_4 SO_2

    Full text link
    We study the ground state of the model Hamiltonian of the trimerized S=1/2S=1/2 quantum Heisenberg chain Cu3Cl6(H2O)2β‹…2H8C4SO2\rm Cu_3 Cl_6 (H_2 O)_2 \cdot 2H_8 C_4 SO_2 in which the non-magnetic ground state is observed recently. This model consists of stacked trimers and has three kinds of coupling constants between spins; the intra-trimer coupling constant J1J_1 and the inter-trimer coupling constants J2J_2 and J3J_3. All of these constants are assumed to be antiferromagnetic. By use of the analytical method and physical considerations, we show that there are three phases on the J~2βˆ’J~3\tilde J_2 - \tilde J_3 plane (J~2≑J2/J1\tilde J_2 \equiv J_2/J_1, J~3≑J3/J1\tilde J_3 \equiv J_3/J_1), the dimer phase, the spin fluid phase and the ferrimagnetic phase. The dimer phase is caused by the frustration effect. In the dimer phase, there exists the excitation gap between the two-fold degenerate ground state and the first excited state, which explains the non-magnetic ground state observed in Cu3Cl6(H2O)2β‹…2H8C4SO2\rm Cu_3 Cl_6 (H_2 O)_2 \cdot 2H_8 C_4 SO_2. We also obtain the phase diagram on the J~2βˆ’J~3 \tilde J_2 - \tilde J_3 plane from the numerical diagonalization data for finite systems by use of the Lanczos algorithm.Comment: LaTeX2e, 15 pages, 21 eps figures, typos corrected, slightly detailed explanation adde
    corecore