60 research outputs found
Performance of ab initio and density functional methods for conformational equilibria of CnH2n+2 alkane isomers (n=2-8)
Conformational energies of n-butane, n-pentane, and n-hexane have been
calculated at the CCSD(T) level and at or near the basis set limit.
Post-CCSD(T) contribution were considered and found to be unimportant. The data
thus obtained were used to assess the performance of a variety of density
functional methods. Double-hybrid functionals like B2GP-PLYP and B2K-PLYP,
especially with a small Grimme-type empirical dispersion correction, are
capable of rendering conformational energies of CCSD(T) quality. These were
then used as a `secondary standard' for a larger sample of alkanes, including
isopentane and the branched hexanes as well as key isomers of heptane and
octane. Popular DFT functionals like B3LYP, B3PW91, BLYP, PBE, and PBE0 tend to
overestimate conformer energies without dispersion correction, while the M06
family severely underestimates GG interaction energies. Grimme-type dispersion
corrections for these overcorrect and lead to qualitatively wrong conformer
orderings. All of these functionals also exhibit deficiencies in the conformer
geometries, particularly the backbone torsion angles. The PW6B95 and, to a
lesser extent, BMK functionals are relatively free of these deficiencies.
Performance of these methods is further investigated to derive conformer
ensemble corrections to the enthalpy function, , and the Gibbs
energy function, , of these alkanes. While
is only moderately sensitive to the level of theory, exhibits more pronounced sensitivity. Once again, double hybrids
acquit themselves very well.Comment: J. Phys. Chem. A, revised [Walter Thiel festschrift
Two-Loop Diagrammatics in a Self-Dual Background
Diagrammatic rules are developed for simplifying two-loop QED diagrams with
propagators in a constant self-dual background field. This diagrammatic
analysis, using dimensional regularization, is used to explain how the fully
renormalized two-loop Euler-Heisenberg effective Lagrangian for QED in a
self-dual background field is naturally expressed in terms of one-loop
diagrams. The connection between the two-loop and one-loop vacuum diagrams in a
background field parallels a corresponding connection for free vacuum diagrams,
without a background field, which can be derived by simple algebraic
manipulations. It also mirrors similar behavior recently found for two-loop
amplitudes in N=4 SUSY Yang-Mills theory.Comment: 16 pp, Latex, Axodra
Benchmark thermochemistry of the C_nH_{2n+2} alkane isomers (n=2--8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria
The thermochemistry of linear and branched alkanes with up to eight carbons
has been reexamined by means of W4, W3.2lite and W1h theories. `Quasi-W4'
atomization energies have been obtained via isodesmic and hypohomodesmotic
reactions. Our best atomization energies at 0 K (in kcal/mol) are: 1220.04
n-butane, 1497.01 n-pentane, 1774.15 n-hexane, 2051.17 n-heptane, 2328.30
n-octane, 1221.73 isobutane, 1498.27 isopentane, 1501.01 neopentane, 1775.22
isohexane, 1774.61 3-methylpentane, 1775.67 diisopropyl, 1777.27 neohexane,
2052.43 isoheptane, 2054.41 neoheptane, 2330.67 isooctane, and 2330.81
hexamethylethane. Our best estimates for are: -30.00
n-butane, -34.84 n-pentane, -39.84 n-hexane, -44.74 n-heptane, -49.71 n-octane,
-32.01 isobutane, -36.49 isopentane, -39.69 neopentane, -41.42 isohexane,
-40.72 3-methylpentane, -42.08 diisopropyl, -43.77 neohexane, -46.43
isoheptane, -48.84 neoheptane, -53.29 isooctane, and -53.68 hexamethylethane.
These are in excellent agreement (typically better than 1 kJ/mol) with the
experimental heats of formation at 298 K obtained from the CCCBDB and/or NIST
Chemistry WebBook databases. However, at 0 K a large discrepancy between theory
and experiment (1.1 kcal/mol) is observed for only neopentane. This deviation
is mainly due to the erroneous heat content function for neopentane used in
calculating the 0 K CCCBDB value. The thermochemistry of these systems,
especially of the larger alkanes, is an extremely difficult test for density
functional methods. A posteriori corrections for dispersion are essential.
Particularly for the atomization energies, the B2GP-PLYP and B2K-PLYP
double-hybrids, and the PW6B95 hybrid-meta GGA clearly outperform other DFT
functionals.Comment: (J. Phys. Chem. A, in press
Polyenylpyrrole Derivatives Inhibit NLRP3 Inflammasome Activation and Inflammatory Mediator Expression by Reducing Reactive Oxygen Species Production and Mitogen-Activated Protein Kinase Activation
10.1371/journal.pone.0076754PLoS ONE810-POLN
- …