7 research outputs found

    Influence of running conditions on resonant oscillations in fresh-air ventilator blades used in thermal power plants

    No full text
    High frequency cyclic load of fresh air supply to ventilator blades in thermo energetic facilities can cause the occurrence of fretting in the pressed overlap of ventilator shaft and socket. These loads can be generated by the resonant oscillations of ventilator blades and thermal residual stress due to welding. To prevent running in resonant conditions, the manufacturer of the ventilator defined a procedure of adjusting blades natural frequency in the process of production, as well as period control during exploitation period. The numerical simulations and the accelerations measured and presented in this paper, enabling analysis of mass changes and rotation rate effects on resonant oscillations occurrence in fresh air ventilator

    Thermal management evaluation of the complex electro-optical system

    No full text
    The thermal management of a complex electro-optical system aimed for outdoor application is challenging task due to the requirement of having an air-sealed enclosure, harsh working environment, and an additional thermal load generated by sunlight. It is essential to consider the effect of heating loads in the system components, as well as the internal temperature distribution, that can have influence on the system life expectancy, operational readiness and parameters, and possibility for catastrophic failure. The main objective of this paper is to analyze internal temperature distribution and evaluate its influence on system component operation capability. The electro-optical system simplified model was defined and related thermal balance simulation model based on Solid Works thermal analysis module was set and applied for temperature distribution calculation. Various outdoor environment scenarios were compared to evaluate system temperature distribution and evaluate its influence on system operation, reliability, and life time in application environment. This work was done during the design process as a part of the electro-optical system optimization. The results show that temperature distribution will not be cause for catastrophic failure and malfunction operation during operation in the expected environment

    Corrosion Behavior of the Cu24Zn5Al Alloy in Sodium Sulfate Solution in the Presence of 1-Phenyl-5-mercaptotetrazole

    No full text
    The results of this research on the electrochemical behavior of Cu24Zn5Al alloy in a 0.1 mol/dm3 sodium sulfate (Na2SO4) solution containing 1-phenyl-5-mercaptotetrazole (PMT) are presented in this paper. The influence of PMT concentration, chloride ion concentration, and pre-treatment were examined. The influence of pre-treatment was studied in terms of the effect of the immersion time of the electrode in the appropriate inhibitor solution. After selecting the optimal immersion time, its effect on the behavior of the Cu24Zn5Al alloy was tested in a 0.1 mol/dm3 solution of sodium sulfate in the presence of different concentrations of chloride ions. Research shown that with the increase of PMT concentration, the anodic current density around the corrosion potential decreases, indicating that PMT behaves as a corrosion inhibitor for Cu24Zn5Al alloy

    Electrochemical Analysis of the Influence of Purines on Copper, Steel and Some Other Metals Corrosion

    No full text
    Metals stability and corrosion resistance are very important factors that influence the possibility of their applications. In order to study and foresee the behavior of metals during various applications in all kinds of conditions and media, numerous approaches and techniques are developed and applied. Among those techniques, electrochemical measurements nowadays have a dominant role since they are proved to be highly efficient, reliable, fast, relatively low-cost, and easy regarding the preparation and execution of measurements. Besides that, they also provide quite a good amount of data regarding the effect and the mechanism of the reactions that metals interact in. Metals corrosion is reduced by various methods, one of the most frequently used ones is the application of corrosion inhibitors. Usually, organic compounds are studied as potential corrosion inhibitors, and at the moment the focus is on the effect on the environment. Hence, environmentally friendly and non-toxic inhibitors are important research topics. Purines, since they are the group of bioorganic compounds found in numerous biochemical structures such as DNA and RNA, present a very interesting possible solution and are studied as inhibitors of corrosion for copper, steel, aluminum, etc., as well as for some metal alloys. Data obtained and available up until the present are presented and discussed in this review

    Recent Advances in Electrochemical Sensors for Caffeine Determination

    No full text
    The determination of target analytes at very low concentrations is important for various fields such as the pharmaceutical industry, environmental protection, and the food industry. Caffeine, as a natural alkaloid, is widely consumed in various beverages and medicines. Apart from the beneficial effects for which it is used, caffeine also has negative effects, and for these reasons it is very important to determine its concentration in different mediums. Among numerous analytical techniques, electrochemical methods with appropriate sensors occupy a special place since they are efficient, fast, and entail relatively easy preparation and measurements. Electrochemical sensors based on carbon materials are very common in this type of research because they are cost-effective, have a wide potential range, and possess relative electrochemical inertness and electrocatalytic activity in various redox reactions. Additionally, these types of sensors could be modified to improve their analytical performances. The data available in the literature on the development and modification of electrochemical sensors for the determination of caffeine are summarized and discussed in this review

    Ravnoteža para-tečnost OPLS, optimizovanje potencijala za tečnu simulaciju, modela binarnih sistema alkana i alkana + alkohola

    No full text
    The NpT - Gibbs ensemble Monte Carlo computer simulation method was applied to predict the vapour-liquid equilibrium (VLE) behavior of the binary systems ethane + pentane at 277.55 K and 310.95 K, ethane + hexane at 298.15 K, propane + methanol at 313.15 K and propane + ethanol at 325.15 K and 425.15 K. The optimized potentials for the liquid simulating (OPLS) model were used to describe the interactions of alkanes and alcohols. The simulated VLE predictions are compared with experimental data available for the pressure and phase composition of the analyzed binary systems. The agreement between the experimental data and the simulation results is found to be generally good, although slightly better for system in which both components were nonpolar.Metod NpT-Gibbs-ovih ansambla i Monte Carlo molekulska simulacija su primenjeni na predskazivanje ravnoteža para-tečnost (VLE) binarnih sistema etan + pentan na 277.55 K i 310.95 K, etan + heksan na 298.15 K, propan + metanol na 313.15 K i propan + etanol na 325.15 K i 425.15 K. Optimizovani parametri za tečnu simulaciju (OPLS) su koriŔćeni da opiÅ”u interakciju alkana i alkohola. Dobijeni rezultati simulacije ravnoteže para-tečnost su upoređeni sa dostupnim eksperimentalnim podacima za odgovarajuće pritiske i sastave ispitivanih binarnih sistema. Može se reći da je dobijeno dobro slaganje sa eksperimentalnim podacima, mada neÅ”to bolje kod sistema u kojima su obe komponente nepolarne
    corecore