9 research outputs found

    Development of the PSYCHS: Positive SYmptoms and Diagnostic Criteria for the CAARMS Harmonized with the SIPS

    Get PDF
    Aim: To harmonize two ascertainment and severity rating instruments commonly used for the clinical high risk syndrome for psychosis (CHR-P): the Structured Interview for Psychosis-risk Syndromes (SIPS) and the Comprehensive Assessment of At-Risk Mental States (CAARMS). Methods: The initial workshop is described in the companion report from Addington et al. After the workshop, lead experts for each instrument continued harmonizing attenuated positive symptoms and criteria for psychosis and CHR-P through an intensive series of joint videoconferences. Results: Full harmonization was achieved for attenuated positive symptom ratings and psychosis criteria, and modest harmonization for CHR-P criteria. The semi-structured interview, named Positive SYmptoms and Diagnostic Criteria for the CAARMS Harmonized with the SIPS (PSYCHS), generates CHR-P criteria and severity scores for both CAARMS and SIPS. Conclusions: Using the PSYCHS for CHR-P ascertainment, conversion determination, and attenuated positive symptom severity rating will help in comparing findings across studies and in meta-analyses

    pnlbwh/conversion: ROI logic correction

    Full text link
    ROI logic corrected --lut argument added case/image list reading utility adde

    Recognizing Distractions for Assistive Driving by Tracking Body Parts

    Full text link

    Harmonized diffusion MRI data and white matter measures from the Adolescent Brain Cognitive Development Study

    Full text link
    Abstract The Adolescent Brain Cognitive Development (ABCD) StudyÂź has collected data from over 10,000 children across 21 sites, providing insights into adolescent brain development. However, site-specific scanner variability has made it challenging to use diffusion MRI (dMRI) data from this study. To address this, a dataset of harmonized and processed ABCD dMRI data (from release 3) has been created, comprising quality-controlled imaging data from 9,345 subjects, focusing exclusively on the baseline session, i.e., the first time point of the study. This resource required substantial computational time (approx. 50,000 CPU hours) for harmonization, whole-brain tractography, and white matter parcellation. The dataset includes harmonized dMRI data, 800 white matter clusters, 73 anatomically labeled white matter tracts in full and low resolution, and 804 different dMRI-derived measures per subject (72.3 TB total size). Accessible via the NIMH Data Archive, it offers a large-scale dMRI dataset for studying structural connectivity in child and adolescent neurodevelopment. Additionally, several post-harmonization experiments were conducted to demonstrate the success of the harmonization process on the ABCD dataset

    Deep-MI/FastSurfer: v.2.1.2

    Full text link
    FastSurfer 2.1.2 Minor fix to store 001.mgz correctly. What's Changed Fix: save loaction of mri/orig/001.mgz by @dkuegler in https://github.com/Deep-MI/FastSurfer/pull/33

    Opposing white matter microstructure abnormalities in 22q11.2 deletion and duplication carriers.

    Full text link
    Deletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity. Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22q-del) found nonspecific white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the first time, investigate WM microstructure in 22q11.2 duplication carriers (22q-dup). Multi-shell diffusion-weighted images were acquired from 26 22q-del, 19 22q-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM and cerebrospinal fluid (CSF) volumes. In 22q-del, anisotropy following free-water elimination remained significantly higher compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when correcting for the higher CSF and lower WM volumes. In contrast, 22q-dup had lower anisotropy and greater extracellular space than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-number variation on WM, which may arise from distinct pathologies. In 22q-del, microstructural abnormalities may be secondary to enlarged CSF space and more densely packed WM. In 22q-dup, we see evidence for demyelination similar to what is commonly observed in neuropsychiatric disorders

    White matter changes in psychosis risk relate to development and are not impacted by the transition to psychosis.

    Full text link
    Subtle alterations in white matter microstructure are observed in youth at clinical high risk (CHR) for psychosis. However, the timing of these changes and their relationships to the emergence of psychosis remain unclear. Here, we track the evolution of white matter abnormalities in a large, longitudinal cohort of CHR individuals comprising the North American Prodrome Longitudinal Study (NAPLS-3). Multi-shell diffusion magnetic resonance imaging data were collected across multiple timepoints (1-5 over 1 year) in 286 subjects (aged 12-32 years): 25 CHR individuals who transitioned to psychosis (CHR-P; 61 scans), 205 CHR subjects with unknown transition outcome after the 1-year follow-up period (CHR-U; 596 scans), and 56 healthy controls (195 scans). Linear mixed effects models were fitted to infer the impact of age and illness-onset on variation in the fractional anisotropy of cellular tissue (FAT) and the volume fraction of extracellular free water (FW). Baseline measures of white matter microstructure did not differentiate between HC, CHR-U and CHR-P individuals. However, age trajectories differed between the three groups in line with a developmental effect: CHR-P and CHR-U groups displayed higher FAT in adolescence, and 4% lower FAT by 30 years of age compared to controls. Furthermore, older CHR-P subjects (20+ years) displayed 4% higher FW in the forceps major (p < 0.05). Prospective analysis in CHR-P did not reveal a significant impact of illness onset on regional FAT or FW, suggesting that transition to psychosis is not marked by dramatic change in white matter microstructure. Instead, clinical high risk for psychosis-regardless of transition outcome-is characterized by subtle age-related white matter changes that occur in tandem with development

    Accelerating Medicines PartnershipÂź Schizophrenia (AMPÂź SCZ):Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis

    Get PDF
    This article describes the rationale, aims, and methodology of the Accelerating Medicines PartnershipÂź Schizophrenia (AMPÂź SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals.</p
    corecore