46 research outputs found

    Experimental demonstration of two-photon magnetic resonances in a single-spin-system of a solid

    Get PDF
    While the manipulation of quantum systems is significantly developed so far, achieving a single-source multi-use system for quantum-information processing and networks is still challenging. A virtual state, a so-called ``dressed state," is a potential host for quantum hybridizations of quantum physical systems with various operational ranges. We present an experimental demonstration of a dressed state generated by two-photon magnetic resonances using a single spin in a single nitrogen-vacancy center in diamond. The two-photon magnetic resonances occur under the application of microwave and radio-frequency fields, with different operational ranges. The experimental results reveal the behavior of two-photon magnetic transitions in a single defect spin in a solid, thus presenting new potential quantum and semi-classical hybrid systems with different operational ranges using superconductivity and spintronics devices.Comment: 9 pages, 7 figures, Revised manuscript and figure

    Efficient decoherence-free entanglement distribution over lossy quantum channels

    Full text link
    We propose and demonstrate a scheme for boosting up the efficiency of entanglement distribution based on a decoherence-free subspace (DFS) over lossy quantum channels. By using backward propagation of a coherent light, our scheme achieves an entanglement-sharing rate that is proportional to the transmittance T of the quantum channel in spite of encoding qubits in multipartite systems for the DFS. We experimentally show that highly entangled states, which can violate the Clauser-Horne-Shimony-Holt inequality, are distributed at a rate proportional to T.Comment: 5pages, 5figure

    An elementary optical gate for expanding entanglement web

    Full text link
    We introduce an elementary optical gate for expanding polarization entangled W states, in which every pair of photons are entangled alike. The gate is composed of a pair of 50:50 beamsplitters and ancillary photons in the two-photon Fock state. By seeding one of the photons in an nn-photon W state into this gate, we obtain an (n+2)(n+2)-photon W state after post-selection. This gate gives a better efficiency and a simpler implementation than previous proposals for W\rm W-state preparation.Comment: 5 pages, 2 figures. To appear in Phys. Rev.

    Demonstration of local expansion toward large-scale entangled webs

    Full text link
    We demonstrate an optical gate that increases the size of polarization-based W states by accessing only one of the qubits. Using this gate, we have generated three-photon and four-photon W states with fidelities 0.836±0.0420.836\pm 0.042 and 0.784±0.0280.784\pm 0.028, respectively. We also confirmed existence of pairwise entanglement in every pair of the qubits including the one that was left untouched by the gate. The gate is applicable to any size of W states and hence is a universal tool for expanding entanglement.Comment: 5 pages, 4 figure

    WMO Space-Based Weather and Climate Extremes Monitoring Demonstration Project (SEMDP): First Outcomes of Regional Cooperation on Drought and Heavy Precipitation Monitoring for Australia and Southeast Asia

    Get PDF
    To improve monitoring of extreme weather and climate events from space, the World Meteorological Organization (WMO) initiated the space-based weather and climate extremes monitoring demonstration project (SEMDP). Presently, SEMDP is focused on drought and heavy precipitation monitoring over Southeast Asia and the Pacific. Space-based data and derived products form critical part of meteorological services’ operations for weather monitoring; however, satellite products are still not fully utilized for climate applications. Using SEMDP satellite-derived precipitation products, it would be possible to monitor extreme precipitation events with uniform spatial coverage and over various time periods – pentad, weekly, 10 days, monthly and longer time-scales. In this chapter, SEMDP satellite-derived precipitation products over the Asia-Pacific region produced by the Earth Observation Research Center/Japan Aerospace Exploration Agency (EORC/JAXA) and the Climate Prediction Center/National Oceanic and Atmospheric Administration (CPC/NOAA) are introduced. Case studies for monitoring (i) drought in Australia in July-October 2007 and September 2018 and (ii) heavy precipitation over Australia in December 2010 and Thailand and the Peninsular Malaysia in November-December 2014 which caused widespread flooding are also presented. Satellite observations are compared with in situ data to demonstrate value of satellite-derived estimates of precipitation for drought and heavy rainfall monitoring
    corecore