2 research outputs found

    Delineation of the Germline and Somatic Mutation Interaction Landscape in Triple-Negative and Non-Triple-Negative Breast Cancer

    No full text
    Background. Breast cancer development and progression involve both germline and somatic mutations. High-throughput genotyping and next-generation sequencing technologies have enabled discovery of genetic risk variants and acquired somatic mutations driving the disease. However, the possible oncogenic interactions between germline genetic risk variants and somatic mutations in triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBC) have not been characterized. Here, we delineated the possible oncogenic interactions between genes containing germline and somatic mutations in TNBC and non-TNBC and investigated whether there are differences in gene expression and mutation burden between the two types of breast cancer. Methods. We addressed this problem by integrating germline mutation information from genome-wide association studies with somatic mutation information from next-generation sequencing using gene expression data as the intermediated phenotype. We performed network and pathway analyses to discover molecular networks and signalling pathways enriched for germline and somatic mutations. Results. The investigation revealed signatures of differentially expressed and differentially somatic mutated genes between TNBC and non-TNBC. Network and pathway analyses revealed functionally related genes interacting in gene regulatory networks and multiple signalling pathways enriched for germline and somatic mutations for each type of breast cancer. Among the signalling pathways discovered included the DNA repair and Androgen and ATM signalling pathways for TNBC and the DNA damage response, molecular mechanisms of cancer, and ATM and GP6 signalling pathways for non-TNBC. Conclusions. The results show that integrative genomics is a powerful approach for delineating oncogenic interactions between genes containing germline and genes containing somatic mutations in TNBC and non-TNBC and establishes putative functional bridges between genetic and somatic alterations and the pathways they control in the two types of breast cancer

    Whole Genome Transcriptome Analysis of the Association between Obesity and Triple-Negative Breast Cancer in Caucasian Women

    No full text
    Background: Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, with poor outcomes. The molecular basis of TNBC remains poorly understood. The objective of this exploratory study was to investigate the association between obesity and TNBC in premenopausal and postmenopausal Caucasian women using transcription profiling. Methods: We compared gene expression levels of tumor samples drawn from normal weight, overweight, and obese pre and postmenopausal women diagnosed with TNBC. We performed hierarchical clustering to assess similarity in patterns of gene expression profiles, and conducted network and pathway analysis to identify molecular networks and biological pathways. Results: We discovered gene signatures distinguishing normal weight from obese, normal weight from overweight, and overweight from obese individuals in both premenopausal and postmenopausal women. The analysis revealed molecular networks and biological pathways associating obesity with TNBC. The discovered pathways included the unfolded protein response, endoplasmic reticulum stress, B cell receptor, and autophagy signaling pathways in obese premenopausal women; and the integrin, axonal guidance, ERK/MAPK (extracellular-signal-regulated kinase/mitogen activated protein kinase) and glutathione biosynthesis signaling pathways in obese postmenopausal women. Conclusions: The results suggest that both overweight and obese status are associated with TNBC, highlighting the need for conformation of these results in independent studies
    corecore