3,394 research outputs found
Angular momentum effects in weak gravitational fields
It is shown that, contrary to what is normally expected, it is possible to
have angular momentum effects on the geometry of space time at the laboratory
scale, much bigger than the purely Newtonian effects. This is due to the fact
that the ratio between the angular momentum of a body and its mass, expressed
as a length, is easily greater than the mass itself, again expressed as a
length.Comment: LATEX, 8 page
Space Time Defects as a Source of Curvature and Torsion
Space time is described as a continuum four-dimensional medium similar to
ordinary elastic continua. Exploiting the analogy internal stress states are
considered. The internal ''stress'' is originated by the presence of defects.
The defects are described according to the typical Volterra process. The case
of a point defect in an otherwise isotropic four-dimensional medium is
discussed showing that the resulting metric tensor corresponds to an expanding
(or contracting) universe filled up with a non-zero energy-momentum density.Comment: Presentation at the Sixth Friedman seminar in Cargese 28/6-3/7/2004.
Submitted for the proceedings of the seminar to appear in the International
Journal of Modern Physics
Geometric treatment of the gravitomagnetic clock effect
We have developed a general geometric treatment of the GCE valid for any
stationary axisymmetric metric. The method is based on the remark that the
world lines of objects rotating along spacely circular trajectories are in any
case, for those kind of metrics, helices drawn on the flat bidimensional
surface of a cylinder. Applying the obtained formulas to the special cases of
the Kerr and weak field metric for a spinning body, known results for time
delays and synchrony defects are recovered.Comment: 14 pages, LATEX, 2 figure
Numerically Modeling the First Peak of the Type IIb SN 2016gkg
Many Type IIb supernovae (SNe) show a prominent additional early peak in
their light curves, which is generally thought to be due to the shock cooling
of extended hydrogen-rich material surrounding the helium core of the exploding
star. The recent SN 2016gkg was a nearby Type IIb SN discovered shortly after
explosion, which makes it an excellent candidate for studying this first peak.
We numerically explode a large grid of extended envelope models and compare
these to SN 2016gkg to investigate what constraints can be derived from its
light curve. This includes exploring density profiles for both a convective
envelope and an optically thick steady-state wind, the latter of which has not
typically been considered for Type IIb SNe models. We find that roughly
of extended material with a radius of
reproduces the photometric light curve data,
consistent with pre-explosion imaging. These values are independent of the
assumed density profile of this material, although a convective profile
provides a somewhat better fit. We infer from our modeling that the explosion
must have occurred within of the first observed data
point, demonstrating that this event was caught very close to the moment of
explosion. Nevertheless, our best-fitting one-dimensional models overpredict
the earliest velocity measurements, which suggests that the hydrogen-rich
material is not distributed in a spherically symmetric manner. We compare this
to the asymmetries seen in the SN IIb remnant Cas A, and we discuss the
implications of this for Type IIb SN progenitors and explosion models.Comment: 8 pages, 8 figures, updated version accepted for publication in The
Astrophysical Journa
Theoretical and numerical study of the phase diagram of patchy colloids: ordered and disordered patch arrangements
We report theoretical and numerical evaluations of the phase diagram for a
model of patchy particles. Specifically we study hard-spheres whose surface is
decorated by a small number f of identical sites ("sticky spots'') interacting
via a short-range square-well attraction. We theoretically evaluate, solving
the Wertheim theory, the location of the critical point and the gas-liquid
coexistence line for several values of f and compare them to results of Gibbs
and Grand Canonical Monte Carlo simulations. We study both ordered and
disordered arrangements of the sites on the hard-sphere surface and confirm
that patchiness has a strong effect on the phase diagram: the gas-liquid
coexistence region in the temperature-density plane is significantly reduced as
f decreases. We also theoretically evaluate the locus of specific heat maxima
and the percolation line.Comment: preprint, 32 pages, 6 figures, 3 tables, J. Chem. Phys. in pres
A STRAINED SPACE-TIME TO EXPLAIN THE LARGE SCALEPROPERTIES OF THE UNIVERSE
Space-time can be treated as a four-dimensional material continuum. The corresponding generally curved manifold can be thought of as having been obtained, by continuous deformation, from a four-dimensional Euclidean manifold. In a three-dimensional ordinary situation such a deformation process would lead to strain in the manifold. Strain in turn may be read as half the diÂźerence between the actual metric tensor and the Euclidean metric tensor of the initial unstrained manifold. On the other side we know that an ordinary material would react to the attempt to introduce strain giving rise to internal stresses and one would have correspondingly a deformation energy term. Assuming the conditions of linear elasticity hold, the deformation energy is easily written in terms of the strain tensor. The Einstein-Hilbert action is generalized to include the new deformation energy term. The new action for space-time has been applied to a Friedmann-Lemaitre- Robertson-Walker universe filled with dust and radiation. The accelerated expansion is recovered, then the theory has been put through four cosmological tests: primordial isotopic abundances from Big Bang Nucleosynthesis; Acoustic Scale of the CMB; Large Scale Structure formation; luminosity/redshift relation for type Ia supernovae. The result is satisfying and has allowed to evaluate the parameters of the theor
Phase diagram of patchy colloids: towards empty liquids
We report theoretical and numerical evaluations of the phase diagram for
patchy colloidal particles of new generation. We show that the reduction of the
number of bonded nearest neighbours offers the possibility of generating liquid
states (i.e. states with temperature lower than the liquid-gas critical
temperature) with a vanishing occupied packing fraction (), a case which
can not be realized with spherically interacting particles. Theoretical results
suggest that such reduction is accompanied by an increase of the region of
stability of the liquid phase in the (-) plane, possibly favoring the
establishment of homogeneous disordered materials at small , i.e. stable
equilibrium gels.Comment: 4 pages, 4 figures, revised version, accepted in Phys. Rev. Let
Relativistic contraction and related effects in noninertial frames
Although there is no relative motion among different points on a rotating
disc, each point belongs to a different noninertial frame. This fact, not
recognized in previous approaches to the Ehrenfest paradox and related
problems, is exploited to give a correct treatment of a rotating ring and a
rotating disc. Tensile stresses are recovered, but, contrary to the prediction
of the standard approach, it is found that an observer on the rim of the disc
will see equal lengths of other differently moving objects as an inertial
observer whose instantaneous position and velocity are equal to that of the
observer on the rim. The rate of clocks at various positions, as seen by
various observers, is also discussed. Some results are generalized for
observers arbitrarily moving in a flat or a curved spacetime. The generally
accepted formula for the space line element in a non-time-orthogonal frame is
found inappropriate in some cases. Use of Fermi coordinates leads to the result
that for any observer the velocity of light is isotropic and is equal to ,
providing that it is measured by propagating a light beam in a small
neighborhood of the observer.Comment: 15 pages, significantly revised version, title changed, to appear in
Phys. Rev.
Observer with a constant proper acceleration
Relying on the equivalence principle, a first approach of the general theory
of relativity is presented using the spacetime metric of an observer with a
constant proper acceleration. Within this non inertial frame, the equation of
motion of a freely moving object is studied and the equation of motion of a
second accelerated observer with the same proper acceleration is examined. A
comparison of the metric of the accelerated observer with the metric due to a
gravitational field is also performed.Comment: 5 figure
A spherical model with directional interactions: I. Static properties
We introduce a simple spherical model whose structural properties are similar
to the ones generated by models with directional interactions, by employing a
binary mixture of large and small hard spheres, with a square-well attraction
acting only between particles of different size. The small particles provide
the bonds between the large ones. With a proper choice of the interaction
parameters, as well as of the relative concentration of the two species, it is
possible to control the effective valence. Here we focus on a specific choice
of the parameters which favors tetrahedral ordering and study the equilibrium
static properties of the system in a large window of densities and
temperatures. Upon lowering the temperature we observe a progressive increase
in local order, accompanied by the formation of a four-coordinated network of
bonds. Three different density regions are observed: at low density the system
phase separates into a gas and a liquid phase; at intermediate densities a
network of fully bonded particles develops; at high densities -- due to the
competition between excluded volume and attractive interactions -- the system
forms a defective network. The very same behavior has been previously observed
in numerical studies of non-spherical models for molecular liquids, such as
water, and in models of patchy colloidal particles. Differently from these
models, theoretical treatments devised for spherical potentials, e.g. integral
equations and ideal mode coupling theory for the glass transition can be
applied in the present case, opening the way for a deeper understanding of the
thermodynamic and dynamic behavior of low valence molecules and particles.Comment: 11 pages, 11 figure
- âŠ