34 research outputs found

    Density Functional Theory investigations of titanium gamma-surfaces and stacking faults

    Full text link
    Properties of hcp-Ti such as elastic constants, stacking faults and gamma-surfaces are computed using Density Functional Theory (DFT) and two central force Embedded Atom interaction Models (EAM). The results are compared to previously published calculations and to predicting models. Their implications on the plastic properties of hcp-Ti are discussed.Comment: 12 pages, 3 figures, 3 table

    Magnetism and morphology in faceted B2-ordered FeRh nanoparticles

    No full text
    Whereas the bulk equiatomic FeRh alloy with B2 structure is antiferromagnetic (AFM) below 370 K, we demonstrate that the surface configuration can stabilize the low-temperature ferromagnetic (FM) state in FeRh nanoparticles in the 6–10 nm range. The most stable configuration for FM nanoparticles, predicted through first-principles calculations, is obtained in magnetron sputtering synthesized nanoparticles. The structure, morphology and Rh-(100) surface termination are confirmed by aberration-corrected (scanning) transmission electron microscopy. The FM magnetic state is verified by vibrating sample magnetometry experiments. This combined theoretical and experimental study emphasizes the strong interplay between surface configuration, morphology and magnetic state in magnetic nanoparticles

    Performances of the Lamb Model to Describe the Vibrations of Gold Quantum-Sized Clusters

    No full text
    International audienceLamb modes describe the vibrations of an object as a whole from the stellar scale to the nanometer one. Lamb description has been built from the linear elasticity theory and considers a homogeneous elastic sphere. Our work tries to determine the minimum scale where this description remains valid by studying the vibration of quantum-sized gold clusters (Au6, Au9, and Au25) stabilized by organic molecules. First, our work shows that experimental frequencies of small-functionalized gold clusters obtained by low-frequency Raman spectroscopy can be interpreted with density functional theory calculations. Moreover, the Lamb model broadly succeeds in predicting these Raman acoustic modes only if a correction considering the mass of the surrounding ligands is added. Ligands affect vibrational modes of the core by their mass but also by their covalent bond with the core. The unexpected consequence of this electronic stabilization by the ligands is the sustainability of the Lamb description for clusters as small as six atoms. Finally, the limit of the Lamb model can be reached out at low temperature where the vibration mode spectrum presents a substructuration that the Lamb description, developed for a homogeneous sphere, is unable to predict
    corecore