6 research outputs found

    Cell-surface binding domains from Clostridium cellulovorans can be used for surface display of cellulosomal scaffoldins in Lactococcus lactis

    Get PDF
    Engineering microbial strains combining efficient lignocellulose metabolization and high-value chemical production is a cutting-edge strategy towards cost-sustainable 2nd generation biorefining. Here, protein components of the Clostridium cellulovorans cellulosome were introduced in Lactococcus lactis IL1403, one of the most efficient lactic acid producers but unable to directly ferment cellulose. Cellulosomes are protein complexes with high cellulose depolymerization activity whose synergistic action is supported by scaffolding protein(s) (i.e., scaffoldins). Scaffoldins are involved in bringing enzymes close to each other and often anchor the cellulosome to the cell surface. In this study, three synthetic scaffoldins were engineered by using domains derived from the main scaffoldin CbpA and the Endoglucanase E (EngE) of the C. cellulovorans cellulosome. Special focus was on CbpA X2 and EngE S-layer homology (SLH) domains possibly involved in cell-surface anchoring. The recombinant scaffoldins were successfully introduced in and secreted by L. lactis. Among them, only that carrying the three EngE SLH modules was able to bind to the L. lactis surface although these domains lack the conserved TRAE motif thought to mediate binding with secondary cell wall polysaccharides. The synthetic scaffoldins engineered in this study could serve for assembly of secreted or surface-displayed designer cellulosomes in L. lactis

    Integrated biorefinery strategy for poly(3-hydroxybutyrate) accumulation in Cupriavidus necator DSM 545 using a sugar rich syrup from cereal waste and acetate from gas fermentation

    Get PDF
    Poly(3-hydroxybutyrate) (PHB) is one of the most well-known biodegradable and biocompatible biopolymers produced by prokaryotic microorganisms. It belongs to the family of polyhydroxyalkanoates (PHAs), and it has gained significant attention in recent years due to its potential as a sustainable alternative to traditional petroleum-based plastics. Cupriavidus necator has been identified as a potential producer of PHB for industrial applications due to its ability to produce high amounts of the polymer under controlled conditions, using a wide range of waste substrates. In this study, the ability of Cupriavidus necator DSM 545 strain to produce PHB was tested in a fed-batch strategy providing two different organic substrates. The first is a sugar-based syrup (SBS), derived from cereal waste. The second is an acetate-rich medium obtained through CO2 -H2 fermentation by the acetogenic bacterium Acetobacterium woodii. The carbon sources were tested to improve the accumulation of PHB in the strain. C. necator DSM 545 proved to be able to grow and to perform high accumulation of biopolymer on waste substrates containing glucose, fructose, and acetate, reaching about 10 g/L of PHB, 83% of biopolymer accumulation in cell dry mass, in 48 h of fed-batch fermentation in 0.6 L working volume in a bioreactor. Moreover, a Life Cycle Assessment analysis was performed to evaluate the environmental impact of the process converting the sugar syrup alone and the integrated one. It demonstrated that the integrated process is more sustainable and that the most impactful step is the PHB production, followed by the polymer extraction

    A practical method for gas changing time estimation using a simple gas-liquid mass transfer model

    Get PDF
    The present work explains a practical and simple method to calculate the gas changing time of anaerobic systems. It is substantiated under the physics of gas-liquid transfer theory and allows researchers to obtain an approximate value of gas changing time with few measurements of the gas composition in the outlet of the reactor. The only analytical equipment required is a gas analyzer, and calculations can be done using a spreadsheet. Along with the validation of the model, a short guide for its application in the laboratory is introduced. The model fits the experimental data with less than 1% error in the composition of the out-gas when no carbon dioxide is involved. This method will allow savings in valuable resources such as time and gases while providing greater comprehension of the characteristics of the gas-liquid transfer of the studied system
    corecore