59 research outputs found

    Quantitative Values from Synthetic MRI Correlate with Breast Cancer Subtypes

    Get PDF
    The purpose of this study is to correlate quantitative T1, T2, and proton density (PD) values with breast cancer subtypes. Twenty-eight breast cancer patients underwent MRI of the breast including synthetic MRI. T1, T2, and PD values were correlated with Ki-67 and were compared between ER-positive and ER-negative cancers, and between Luminal A and Luminal B cancers. The effectiveness of T1, T2, and PD in differentiating the ER-negative from the ER-positive group and Luminal A from Luminal B cancers was evaluated using receiver operating characteristic analysis. Mean T2 relaxation of ER-negative cancers was significantly higher than that of ER-positive cancers (p < 0.05). The T1, T2, and PD values exhibited a strong positive correlation with Ki-67 (Pearson’s r = 0.75, 0.69, and 0.60 respectively; p < 0.001). Among ER-positive cancers, T1, T2, and PD values of Luminal A cancers were significantly lower than those of Luminal B cancers (p < 0.05). The area under the curve (AUC) of T2 for discriminating ER-negative from ER-positive cancers was 0.87 (95% CI: 0.69–0.97). The AUC of T1 for discriminating Luminal A from Luminal B cancers was 0.83 (95% CI: 0.61–0.95). In conclusion, quantitative values derived from synthetic MRI show potential for subtyping of invasive breast cancers

    Diffusion-weighted MR neurography for the assessment of brachial plexopathy in oncological practice

    Get PDF
    Background: To evaluate diffusion-weighted MR neurography (DW-MRN) for visualizing the brachial plexus and for the assessment of brachial plexopathy. Methods: 40 oncological patients with symptoms of brachial plexopathy underwent 1.5 T MRI using conventional MR sequences and unidirectional DW-MRN. The images were independently reviewed by two radiologists. Anatomic visualization of the brachial plexus was scored using a 5 point scale on conventional MR sequences and then combined with DW-MRN. A brachial plexus abnormality was also scored using a 5 point scale and inter-observer agreement determined by kappa statistics. Diagnostic accuracy for brachial plexopathy assessed by conventional MRI alone versus conventional MRI combined with DW-MRN was compared by ROC analysis using reference standards. Results: DW-MRN significantly improved visualization of the brachial plexus compared with conventional MRI alone (P <0.001). When assessing brachial plexopathy, inter-observer agreement was moderate for conventional MRI (kappa = 0.48) but good for conventional MRI with DW-MRN (kappa = 0.62). DW-MRN combined with conventional MRI significantly improved diagnostic accuracy in one observer (P <0.05) but was similar in the other observer. Conclusion: DW-MRN improved visualization of the brachial plexus. Combining DW-MRN with conventional MRI can improve inter-observer agreement and detection of brachial plexopathy in symptomatic oncological patients

    Diffusion-weighted MR imaging of the liver at 3.0 Tesla using TRacking Only Navigator echo (TRON): A feasibility study

    Full text link
    Purpose: To assess the feasibility of TRacking Only Navigator echo (TRON) for diffusion-weighted magnetic resonance imaging (DWI) of the liver at 3.0T. Materials and Methods: Ten volunteers underwent TRON, respiratory triggered, and free breathing DWI of the liver at 3.0 Tesla (T). Scan times were measured. Image sharpness, degree of stair-step and stripe artifacts for the three methods were assessed by two observers. Results: Mean scan times of TRON and respiratory triggered DWI relative to free breathing DWI were 34% and 145% longer respectively. In four of eight comparisons (two observers, two b-values, two slice orientations), TRON DWI image sharpness was significantly better than free breathing DWI, but inferior to respiratory triggered DWI. In two of four comparisons (two observers, two b-values), degree of stair-step artifacts in TRON DWI was significantly lower than in respiratory triggered DWI. Degree of stripe artifacts between the three methods was not significantly different. Conclusion: DWI of the liver at 3.0T using TRON is feasible. Image sharpness in TRON DWI is superior to that in free breathing DWI. Although image sharpness of respiratory triggered DWI is still better, TRON DWI requires less scan time and reduces stair-step artifacts. J. Magn. Reson. Imaging 2009;30:1027–1033. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64324/1/21939_ftp.pd

    Diagnostic value of computed high b-value whole-body diffusion-weighted imaging for primary prostate cancer

    Get PDF
    Purpose: To investigate the utility of post-acquisition computed diffusion-weighted imaging (cDWI) for primary prostate cancer (PCa) evaluation in biparametric whole-body MRI (bpWB-MRI). Methods: Patients who underwent pelvic MRI for PCa screening and subsequent bpWB-MRI for staging were included. Two radiologists assessed the diagnostic performance of the following datasets for clinically significant PCa diagnosis (grade group >= 2 according to the Prostate Imaging-Reporting and Data System, version 2.1): bpMRI(2000) (axial DWI scans with a b-value of 2,000 s/mm(2) + axial T2WI scans from pre-biopsy pelvic MRI), computed bpWB-MRI2000 (computed WB-DWI scans with a b-value of 2,000 s/mm(2) + axial WB-T2WI scans), and native bpWB-MRI1000 (native axial WB-DWI scans with a b-value of 1,000 s/mm(2) + axial WB-T2WI scans). Systemic biopsy was used as reference standard. Results: Fifty-one patients with PCa were included. The areas under the curve (AUCs) of bpMRI(2000) (0.89 for reader 1 and 0.86 for reader 2) and computed bpWB-MRI2000 (0.86 for reader 1 and 0.83 for reader 2) were significantly higher (p < 0.001) than those of native bpWB-MRI1000 (0.67 for both readers). No significant difference was observed between the AUCs of bpMRI(2000) and computed bpWB-MRI2000 (p = 0.10 for reader 1 and p = 0.25 for reader 2). Conclusions: The diagnostic performance of computed bpWB-MRI2000 was similar to that of dedicated pelvic bpMRI(2000) for primary PCa evaluation. cDWI can be recommended for implementation in standard WB-MRI protocols to facilitate a one-step evaluation for concurrent detection of primary and metastatic PCa
    corecore