41 research outputs found
Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia
Biogeochemical and diatom export fluxes are presented from two bathypelagic sediment trap deployments in the Antarctic Zone of the Southern Ocean. One of the sediment traps was deployed in very productive, naturally iron-fertilized waters downstream of South Georgia (P3, 2000 m) and compared to a deployment in moderately productive waters upstream of the island system (P2, 1500 m). At both sites significant diatom export events occurred in spring (November) and contained mostly empty cells that were associated with low particulate organic carbon (POC) fluxes. A summer export pulse occurred one month later at P2 (end February/March) compared to P3 (end January). Diatom fluxes at P3 were one order of magnitude higher than at P2, a difference mainly attributed to the short and intense export of resting spores from Chaetoceros Hyalochaete and Thalassiosira antarctica species. Aside from these resting spores, diatom export assemblages at both sites were dominated by empty Fragilariopsis kerguelensis frustules. The fraction of diatoms exported as empty frustules was considerably lower at P3 (52%) than P2 (91%). This difference was related to the flux of intact diatom resting spores at P3 and may partially explain the lower Si:C export stoichiometry observed at P3 (1.1) compared to P2 (1.5). Through the enumeration of full diatom frustules and subsequent biomass calculations we estimate that diatom resting spores account for 42% of annual POC flux in the productive waters downstream of South Georgia. At both sites the contribution of diatom vegetative stages to POC fluxes was considerably lower (<5%). From these analyses we conclude that resting spore export contributes towards the slightly higher bathypelagic (POC) flux at P3 (40.6 mmol m−2 y−1) compared to P2 (26.4 mmol m−2 y−1). We compared our sediment trap records with previously published diatom assemblage data from the mixed layer and surface sediments (3760 m) around South Georgia. The relative proportion of diatom resting spores within diatom assemblages increases as a function of depth and is explained by selective preservation of their robust frustules. Our study highlights the significance of diatom resting spore export as a carbon vector out of the mixed layer. Furthermore, the contribution or resting spores to POC flux in the bathypelagic ocean and sediments suggests they play a particularly important role in sequestering biologically fixed CO2 over climatically relevant timescales
Comparative morphology of Southern Ocean Euphausia species: ecological significance of sexual dimorphic features
Species of the genus Euphausia dominate the euphausiid biomass of the Southern Ocean, the three largest being Euphausia superba, E. triacantha and E. crystallorophias. We measured a number of morphological features to identify differences between, and within, these species to obtain ecological insights. Interspecifically, the greatest difference was carapace size, with that of E. superba being by far the largest and most variable. This likely reflects its prolific spawning capacity compared with other euphausiid species. E. triacantha exhibited an extended sixth abdominal segment that could facilitate greater levels of thrust in the tail flip escape response. The pleopods, which provide propulsion in forward swimming, were more than 50% larger in E. superba, indicating a greater capacity for directional movement at high velocities. E. crystallorophias had eyes that were almost double the size of those in E. superba and E. triacantha, which may help retain visual resolution within its under-ice habitat. Intraspecifically, we found the above morphological features differed little between sexes and developmental stages in E. crystallorophias and E. triacantha, but differed significantly in E. superba. Compared to females and juveniles, male E. superba had significantly larger eyes and pleopods, whilst the carapace in males became shorter as a proportion of body length during growth. These features indicate a greater capacity for searching and swimming in males, which, we hypothesise, increases their ability to locate and fertilise females. This morphological specialisation in male E. superba is indicative of comparatively greater inter-male competition resulting from its tendency to form large, dense swarms
Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean
Antarctic krill play an important role in biogeochemical cycles and can potentially generate high-particulate organic carbon (POC) fluxes to the deep ocean. They also have an unusual trait of moulting continuously throughout their life-cycle. We determine the krill seasonal contribution to POC flux in terms of faecal pellets (FP), exuviae and carcasses from sediment trap samples collected in the Southern Ocean. We found that krill moulting generated an exuviae flux of similar order to that of FP, together accounting for 87% of an annual POC flux (22.8 g m−2 y−1). Using an inverse modelling approach, we determined the krill population size necessary to generate this flux peaked at 261 g m−2. This study shows the important role of krill exuviae as a vector for POC flux. Since krill moulting cycle depends on temperature, our results highlight the sensitivity of POC flux to rapid regional environmental change
Exome capture of Antarctic krill (Euphausia superba) for cost effective genotyping and population genetics with historical collections
Antarctic krill (Euphausia superba Dana) is a keystone species in the Southern Ocean ecosystem, with ecological and commercial significance. However, its vulnerability to climate change requires an urgent investigation of its adaptive potential to future environmental conditions. Historical museum collections of krill from the early 20th century represent an ideal opportunity to investigate how krill have changed over time due to predation, fishing and climate change. However, there is currently no cost-effective method for implementing population scale collection genomics for krill given its genome size (48 Gbp). Here, we assessed the utility of two inexpensive methods for population genetics using historical krill samples, specifically low-coverage shotgun sequencing (i.e. ‘genome-skimming’) and exome capture. Two full-length transcriptomes were generated and used to identify 166 putative gene targets for exome capture bait design. A total of 20 historical krill samples were sequenced using shotgun and exome capture. Mitochondrial and nuclear ribosomal sequences were assembled from both low-coverage shotgun and off-target of exome capture data demonstrating that endogenous DNA sequences could be assembled from historical collections. Although, mitochondrial and ribosomal sequences are variable across individuals from different populations, phylogenetic analysis does not identify any population structure. We find exome capture provides approximately 4500-fold enrichment of sequencing targeted genes, suggesting this approach can generate the sequencing depth required to call identify a significant number of variants. Unlocking historical collections for genomic analyses using exome capture, will provide valuable insights into past and present biodiversity, resilience and adaptability of krill populations to climate change
The global distribution of pteropods and their contribution to carbonate and carbon biomass in the modern ocean
Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly described. The aim of this study was to collect and synthesise existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on temporal and spatial patterns. We collected 25 939 data points from several online databases and 41 scientific articles. These data points corresponded to observations from 15 134 stations, where 93% of observations were of shelled pteropods (Thecosomata) and 7% of non-shelled pteropods (Gymnosomata). The biomass data has been gridded onto a 360 × 180° grid, with a vertical resolution of 33 depth levels. Both the raw data file and the gridded data in NetCDF format can be downloaded from PANGAEA, doi:10.1594/PANGAEA.777387. Data were collected between 1950–2010, with sampling depths ranging from 0–2000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod-specific length to carbon biomass conversion algorithms. In the Northern Hemisphere (NH), the data were distributed quite evenly throughout the year, whereas sampling in the Southern Hemisphere (SH) was biased towards winter and summer values. 86% of all biomass values were located in the NH, most (37%) within the latitudinal band of 30–60° N. The range of global biomass values spanned over four orders of magnitude, with mean and median (non-zero) biomass values of 4.6 mg C m−3 (SD = 62.5) and 0.015 mg C m−3, respectively. The highest mean biomass was located in the SH within the 70–80° S latitudinal band (39.71 mg C m−3, SD = 93.00), while the highest median biomass was in the NH, between 40–50° S (0.06 mg C m−3, SD = 79.94). Shelled pteropods constituted a mean global carbonate biomass of 23.17 mg CaCO3 m−3 (based on non-zero records). Total biomass values were lowest in the equatorial regions and equally high at both poles. Pteropods were found at least to depths of 1000 m, with the highest biomass values located in the surface layer (0–10 m) and gradually decreasing with depth, with values in excess of 100 mg C m−3 only found above 200 m depth.
Tropical species tended to concentrate at greater depths than temperate or high-latitude species. Global biomass levels in the NH were relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of marine ecosystem processes and global biogeochemical cycles. By extrapolating regional biomass to a global scale, we established global pteropod biomass to add up to 500 Tg C
Rapid procedure for the isolation and analysis of fatty acid and fatty alcohol fractions from wax esters of marine zooplankton
A rapid and simple method for the isolation of fatty acid methyl esters and fatty alcohols from the lipid fraction of marine zooplankton is described. Wax esters are the dominant lipid class in most calanoid copepods and trans-esterification results in a high fatty alcohol content in the analytical extract. Current procedures for the separation and purification of lipid classes by preparative thin-layer chromatography are time-consuming and are subject to low recovery of the analytes. In this method, fatty acid methyl esters and fatty alcohols were separated by liquid chromatography using silica or honded amino-silica as the stationary phase. The procedure is equally applicable to the analysis of zooplankton with low wax ester (and hence fatty alcohol) content, for example, a number of species of euphausiid and, generally, for samples of low mass