2 research outputs found
Re-compression Based JPEG Forgery Detection and Localization with Optimal Reconstruction
In today’s media–saturated society, digital images act as the primary carrier for majority of information that flows around us. However, because of the advent of highly sophisticated easy–to–use image processing tools, modifying images has become easy. Joint Photographic Experts Group (JPEG) is the most widely used format, prevalent today as a world–wide standard, for compression and storage of digital images. Almost all present–day digital cameras use the JPEG format for image acquisition and storage, due to its efficient compression features and optimal space requirement. In this propose work we aim to detect malicious tampering of JPEG images, and subsequently reconstruct the forged image optimally. We deal with lossy JPEG image format in this paper, which is more widely adopted compared to its lossless counter–part. The proposed technique is capable of detecting single as well as multiple forged regions in a JPEG image. We aim to achieve optimal reconstruction since the widely used JPEG being a lossy technique, under no condition would allow 100% reconstruction. The proposed reconstruction is optimal in the sense that we aim to obtain a form of the image, as close to its original form as possible, apart from eliminating the effects of forgery from the image. In this work, we exploit the inherent characteristics of JPEG compression and re–compression, for forgery detection and reconstruction of JPEG images. To prove the efficiency of our proposed technique we compare it with the other JPEG forensic techniques and using quality metric measures we assess the visual quality of the reconstructed image