19 research outputs found

    On the role of depletive tests. a review analysis

    Get PDF
    An overview of the diagnostic role of depletion tests for staging Meniere’s disease, especially in the first phase of the disease, is reported. Pros and cons, as well reliability and specificity of this diagnostic procedure is thoroughly analysed

    Early assessment of vestibular function after unilateral cochlear implant surgery

    Get PDF
    Introduction : Cochlear implantation (CI) has been reported to negatively effect on the vestibular function. The study of the vestibular function has variably been conducted by different types of diagnostic tools. The combined use of modern, rapidly performable diagnostic tools could reveal useful for standardizing the evaluation protocol. Methods: In a group of 28 subjects undergoing CI, the video Head Impulse Test (vHIT), the cervical Vestibular Evoked Myogenic Potentials (cVEMPS) and the short-form of Dizziness Handicap Inventory (DHI) questionnaire were investigated pre-operatively and post-operatively (implant on and off) in both the implanted and the contralateral, non-implanted ear. All surgeries were performed with a round window approach (RWA), except for three otosclerosis cases were the extended RWA (eRWA) was used. Results: The vHIT of the lateral semicircular canal showed a pre-operative vestibular involvement in nearly 50% of the cases, whilst the three canals were contemporarily affected in only 14% of them. In all the hypo-functional subjects, cVEMPs were absent. A low VOR gain in all the investigated SSCC was found in 4 subjects (14%). In those subjects, (21.7%) in whom cVEMPs were pre-operatively present and normal in the operated side, absence of response was post-operatives recorded. Discussion/Conclusion: The vestibular protocol applied for the study showed to be appropriate for distinguishing between the CI operated and the non-operated ear. In this regard, cVEMPs showed to be more sensitive than vHIT for revealing a vestibular sufferance after CI, although without statistical significance. Finally, the use of the RWA surgery was apparently not avoiding signs of vestibular impairment to occur

    Mesenchymal stromal cells promote the proliferation of basal stem cells and efficient epithelization in organotypic models of wound healing

    Get PDF
    Adipose derived mesenchymal stromal cells (ADSCs) represent a fascinating tool in the scenario of wound healing and regenerative medicine. Recent data already demonstrated that ADSCs could exert a stimulatory action on epithelial cells through secretion of soluble factors. The aim of the present study was to assess how ADSCs guide wound re-epithelization in vitro in the presence of keratinocytes. We used an organotypic model of wound healing and we seeded keratinocytes on a ADSC-induced dermal matrix. Conventional hematoxylin–eosin stain and immunohistochemistry staining for Ki67, p63 and pan-keratins were performed at different timepoints. Histological sections of organotypic cultures showed complete coverage of the ADSC-induced matrix by keratinocytes. Proliferation of basal stem cells was found to be the main mechanism responsible for epithelization of the dermis. In conclusion, ADSC do not only stimulate dermal regeneration through collagen deposition but also promote epithelization

    Mesenchymal stem cells for the treatment of psoriasis: a comprehensive review

    Get PDF
    Mesenchymal stem cells (MSCs) have recently been shown to have not only regenerative capabilities but also immunomodulating properties. For this reason, they are currently under investigation in clinical trials for the treatment of several autoimmune systemic disorders. Psoriasis is a systemic immune-mediated disease for which MSCs could have therapeutic potential. We analysed the existing literature with regard to MSC-based strategies for the treatment of psoriasis, using the MEDLINE, Embase, Scopus and Cochrane Library electronic databases from inception to the date of study. A number of studies confirm the involvement of MSCs in psoriasis pathogenesis and therefore designate MSCs as an important potential therapeutic tool in this setting. Preclinical data are mostly based on imiquimod-induced murine models of psoriasis, and confirm the anti-inflammatory and immunomodulatory action of MSCs in the setting of psoriasis. Six patients affected by psoriasis were described in four clinical studies. Despite significant differences in terms of therapeutic protocols and clinical outcomes, the MSC-based regimens were efficacious in 100% of the cases. Despite more data still being needed, MSCs could be a promising therapy for psoriasis

    Use of confocal microscopy imaging for in vitro assessment of adipose-derived mesenchymal stromal cells seeding on acellular dermal matrices: 3D reconstruction based on collagen autofluorescence

    Get PDF
    Background: Both mesenchymal stromal cells (MSCs) and acellular dermal matrices (ADMs) represent fascinating therapeutic tools in the wound healing scenario. Strategies aimed at combining these two treatment modalities are currently under investigation. Moreover, scarcity of quantitative, nondestructive techniques for quality assessment of engineered tissues poses great limitations in regenerative medicine and collagen autofluorescence-based imaging techniques are acquiring great importance in this setting. Objective: Our goals were to assess the in vitro interactions between ADSCs and ADMs and to analyze extracellular-matrix production. Methods: Adipose-derived MSCs (ADSC) were plated on 8-mm punch biopsies of a commercially available ADM (Integra\uae). Conventional histology with hematoxylin-eosin staining, environmental scanning electron microscopy, and confocal-laser scanning microscopy were used to obtain imaging of ADSC-seeded ADMs. Collagen production by ADSCs was quantified by mean fluorescence intensity (MFI), expressed in terms of positive pixels/field, obtained through ImageJ software processing of three-dimensional projections from confocal scanning images. Control conditions included: fibroblast-seeded ADM, ADSC- and fibroblast-induced scaffolds, and Integra\uae alone. Results: ADSCs were efficiently seeded on Integra\uae and were perfectly incorporated in the pores of the scaffold. Collagen production was revealed to be significantly higher when ADSCs were seeded on ADM rather than in all other control conditions. Collagen autofluorescence was efficiently used as a surrogate marker of ECM production. Conclusions: Combined therapies based on MSCs and collagenic ADMs are promising therapeutic options for chronic wounds. Not only ADSCs can be efficiently seeded on ADMs, but ADMs also seem to potentiate their regenerative properties, as highlightable from fluorescence confocal imaging

    Which are the main fluorophores in skin and oral mucosa? A review with emphasis on clinical applications of tissue autofluorescence

    Get PDF
    Abstract OBJECTIVES: The present review provides information about which molecules appear to be the main fluorophores in skin and oral mucosa, together with their clinical applications. DESIGN: The MEDLINE database was searched, using "oral mucosa AND fluorophores", "skin AND fluorophores", "epidermal AND fluorophores", "dermal AND fluorophores" and "cutaneous AND fluorophores" as entry terms. We searched the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The level of evidence in the studies was assessed using the Classification of the Oxford Centre for Evidence-based Medicine (CEBM) Levels for Diagnosis. RESULTS: Five papers and 17 were primarily focused on description of fluorophores in oral mucosa and skin Evidence exists that fluorophores of oral mucosa and skin are mainly proteins such as collagen, elastin, keratin and tryptophan. Other possible fluorophores identified are: porphyrins, advanced glycation end products, flavins, lipopigment, nicotinamide adenine dinucleotide, flavin adenine dinucleotide, pheomelanin, eumelanin and components of lipofuscin. Clinical applications of oral mucosal autofluorescence (AF) are related to management of malignant and potentially malignant lesions. In the skin, AF has been used for acne assessment, diagnosis of sweat-gland pathologies, glycemic control and management of malignant lesions and as a marker for skin aging. CONCLUSION: Fluorophores stimulated through AF devices are implied in different physiologic and pathologic processes. AF seems to be useful for several clinical applications, especially in skin department. Because most of the studies show a low level of evidence, further studies are necessary in such a promising and fascinating field

    Field cancerization therapy with ingenol mebutate contributes to restoring skin-metabolism to normal-state in patients with actinic keratosis: a metabolomic analysis

    Get PDF
    Actinic keratosis (AK) is a skin premalignant lesion, which progresses into squamous cell carcinoma (SCC) if left untreated. Ingenol mebutate gel is approved for local treatment of non-hyperkeratotic, non-hypertrophic AK; it also has the potential to act as a field cancerization therapy to prevent the progression of AK to SCC. To gain better insights into the mechanisms of ingenol mebutate beyond the mere clinical assessment, we investigated, for the first time, the metabolome of skin tissues from patients with AK, before and after ingenol mebutate treatment, with high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. The metabolomic profiles were compared with those of tissues from healthy volunteers. Overall, we identified a number of metabolites, the homeostasis of which became altered during the process of tumorigenesis from healthy skin to AK, and was restored, at least partially, by ingenol mebutate therapy. These metabolites may help to attain a better understanding of keratinocyte metabolism and to unmask the metabolic pathways related to cell proliferation. These results provide helpful information to identify biomarkers with prognostic and therapeutic significance in AK, and suggest that field cancerization therapy with ingenol mebutate may contribute to restore skin metabolism to a normal state in patients with AK

    Field cancerization therapy with ingenol mebutate contributes to restoring skin-metabolism to normal-state in patients with actinic keratosis: a metabolomic analysis

    Get PDF
    Actinic keratosis (AK) is a skin premalignant lesion, which progresses into squamous cell carcinoma (SCC) if left untreated. Ingenol mebutate gel is approved for local treatment of non-hyperkeratotic, non-hypertrophic AK; it also has the potential to act as a field cancerization therapy to prevent the progression of AK to SCC. To gain better insights into the mechanisms of ingenol mebutate beyond the mere clinical assessment, we investigated, for the first time, the metabolome of skin tissues from patients with AK, before and after ingenol mebutate treatment, with high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. The metabolomic profiles were compared with those of tissues from healthy volunteers. Overall, we identified a number of metabolites, the homeostasis of which became altered during the process of tumorigenesis from healthy skin to AK, and was restored, at least partially, by ingenol mebutate therapy. These metabolites may help to attain a better understanding of keratinocyte metabolism and to unmask the metabolic pathways related to cell proliferation. These results provide helpful information to identify biomarkers with prognostic and therapeutic significance in AK, and suggest that field cancerization therapy with ingenol mebutate may contribute to restore skin metabolism to a normal state in patients with AK

    Microoxygraph Device for Biosensoristic Applications

    Get PDF
    Oxygen consumption rate (OCR) is a significant parameter helpful to determine in vitro respiratory efficiency of living cells. Oxygen is an excellent oxidant and its electrocatalytic reduction on a noble metal allows accurately detecting it. By means of microfabrication technologies, handy, low-cost, and disposable chip can be attained, minimizing working volumes and improving sensitivity and response time. In this respect, here is presented a microoxygraph device (MOD), based on Clark’s electrode principle, displaying many advantageous features in comparison to other systems. This lab-on-chip platform is composed of a three-microelectrode detector equipped with a microgrooved electrochemical cell, sealed with a polymeric reaction chamber. Au working/counter electrodes and Ag/AgCl reference electrode were fabricated on a glass slide. A microchannel was realized by photoresist lift-off technique and a polydimethylsiloxane (PDMS) nanoporous film was integrated as oxygen permeable membrane (OPM) between the probe and the microreaction chamber. Electrochemical measurements showed good reproducibility and average response time, assessed by periodic injection and suction of a reducing agent. OCR measurements on 3T3 cells, subjected, in real time, to chemical stress on the respiratory chain, were able to show that this chip allows performing consistent metabolic analysis

    Metabolomic analysis of actinic keratosis and scc suggests a grade-independent model of squamous cancerization

    Get PDF
    Background—Actinic keratoses (AKs) are the most common sun-induced precancerous lesions that can progress to squamocellular carcinoma (SCC). Recently, the grade-independent association between AKs and SCC has been suggested; however, the molecular bases of this potential association have not been investigated. This study has assessed the metabolomic fingerprint of AK I, AK II, AK III and SCC using high resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy in order to evaluate the hypothesis of grade-independent association between AK and SCC. Association between AKs and SCCs has also been evaluated by histopathology. Methods—Metabolomic data were obtained through HR-MAS NMR spectroscopy. The whole spectral profiles were analyzed through multivariate statistical analysis using MetaboAnalyst 5.0. Histologic examination was performed on sections stained with hematoxylin and eosin; statistical analysis was performed using STATA software version 14. Results—A group of 35 patients affected by AKs and/or SCCs and 10 healthy controls were enrolled for metabolomics analysis. Histopathological analysis was conducted on 170 specimens of SCCs and AKs (including the ones that underwent metabolomic analysis). SCCs and AK I were found to be significantly associated in terms of the content of some metabolites. Moreover, in the logistic regression model, the presence of parakeratosis in AKs appeared to be less frequently associated with SCCs, while AKs with hypertrophy had a two-fold higher risk of being associated with SCC. Conclusions—Our findings, derived from metabolomics and histopathological data, support the notion that AK I are different from healthy skin and share some different features with SCCs. This may further support the expanding notion that all AKs should be treated independently from their clinical appearance or histological grade because they may be associated with SCC
    corecore