4 research outputs found

    Alteriqipengyuania abyssalis sp. nov., a Novel Member of the Class Alphaproteobacteria Isolated from Sponge, and Emended Description of the Genus Alteriqipengyuania

    No full text
    A novel Gram-negative, aerobic, motile, lemon-yellow-colored, and non-spore-forming rod-shaped bacterium designated strain NZ-12BT was isolated in February 2021 from a sponge species (Crateromorpha) collected at the southern Kermadec Ridge, Pacific Ocean, New Zealand. Comparative 16S rRNA gene-based analyses indicated that strain NZ-12BT shared 98.58%, 96.44%, 96.23%, and 94.78% 16S rRNA sequence similarity to Alteriqipengyuania lutimaris S-5T, Qipengyuania pelagi UST081027-248T, Qipengyuania citreus RE35F/1T, and Alteriqipengyuania halimionae CPA5T, respectively. The major respiratory quinone was ubiquinone-10(Q-10). The polar lipid profile of NZ-12BT was composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyl-N-methyl-ethanolamine, phosphatidylcholine, sphingoglycolipid, phosphatidylglycerol, one unknown polar lipid, three unknown phospholipids, and three unknown glycolipids. The major fatty acids of strain NZ-12BT were C18:1ω12t, C16:0, C17:1ω6c, and C14:02-OH. Carotenoids were present. Genome mining analysis revealed a biosynthetic gene cluster encoding for the terpene biosynthesis. Pairwise ANI and dDDH values of strain NZ-12BT and closely related phylogenetic neighbors were below the threshold values of 95% and 70%, respectively. The DNA G+C content was 65.4 mol% (by genome). Based on data obtained by a polyphasic approach, type strain NZ-12BT (=DSM 112810T = NCCB 100841T) represents a novel species of the genus Alteriqipengyuania, for which the name Alteriqipengyuania abyssalis sp. nov. is proposed

    <i>Alteriqipengyuania abyssalis</i> sp. nov., a Novel Member of the Class <i>Alphaproteobacteria</i> Isolated from Sponge, and Emended Description of the Genus <i>Alteriqipengyuania</i>

    No full text
    A novel Gram-negative, aerobic, motile, lemon-yellow-colored, and non-spore-forming rod-shaped bacterium designated strain NZ-12BT was isolated in February 2021 from a sponge species (Crateromorpha) collected at the southern Kermadec Ridge, Pacific Ocean, New Zealand. Comparative 16S rRNA gene-based analyses indicated that strain NZ-12BT shared 98.58%, 96.44%, 96.23%, and 94.78% 16S rRNA sequence similarity to Alteriqipengyuania lutimaris S-5T, Qipengyuania pelagi UST081027-248T, Qipengyuania citreus RE35F/1T, and Alteriqipengyuania halimionae CPA5T, respectively. The major respiratory quinone was ubiquinone-10(Q-10). The polar lipid profile of NZ-12BT was composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyl-N-methyl-ethanolamine, phosphatidylcholine, sphingoglycolipid, phosphatidylglycerol, one unknown polar lipid, three unknown phospholipids, and three unknown glycolipids. The major fatty acids of strain NZ-12BT were C18:1ω12t, C16:0, C17:1ω6c, and C14:02-OH. Carotenoids were present. Genome mining analysis revealed a biosynthetic gene cluster encoding for the terpene biosynthesis. Pairwise ANI and dDDH values of strain NZ-12BT and closely related phylogenetic neighbors were below the threshold values of 95% and 70%, respectively. The DNA G+C content was 65.4 mol% (by genome). Based on data obtained by a polyphasic approach, type strain NZ-12BT (=DSM 112810T = NCCB 100841T) represents a novel species of the genus Alteriqipengyuania, for which the name Alteriqipengyuania abyssalis sp. nov. is proposed

    Exploring the Antibiotic Production Potential of Heterotrophic Bacterial Communities Isolated from the Marine Sponges Crateromorpha meyeri, Pseudaxinella reticulata, Farrea similaris, and Caulophacus arcticus through Synergistic Metabolomic and Genomic Analyses

    No full text
    The discovery of novel secondary metabolites is actively being pursued in new ecosystems. Sponge-associated bacteria have been in the limelight in recent years on account of their ability to produce bioactive compounds. In this study, heterotrophic bacteria associated with four sponge species were isolated, taxonomically identified, and subjected to screening for the production of bioactive entities against a panel of nine microorganisms, including Gram-positive and negative bacteria, as well as yeast and fungi. Of the 105 isolated strains, 66% were represented by Proteobacteria, 16% by Bacteriodetes, 7% by Actinobacteria, and 11% by Firmicutes. Bioactivity screening revealed that 40% of the total isolated strains showed antimicrobial activity against one or more of the target microorganisms tested. Further, active extracts from selective species were narrowed down by bioassay-guided fractionation and subsequently identified by HR-ESI-MS analyses to locate the active peaks. Presumably responsible compounds for the observed bioactivities were identified as pentadecenoic acid, oleic acid, and palmitoleic acid. One isolate, Qipengyuania pacifica NZ-96T, based on 16S rRNA novelty, was subjected to comparative metabolic reconstruction analysis with its closest phylogenetic neighbors, revealing 79 unique functional roles in the novel isolate. In addition, genome mining of Qipengyuania pacifica NZ-96T revealed three biosynthetic gene clusters responsible for the biosynthesis of terpene, beta lactone, lasso peptide, and hserlactone secondary metabolites. Our results demonstrate the ability to target the sponge microbiome as a potential source of novel microbial life with biotechnological potential

    The SARS-CoV-2 differential genomic adaptation in response to varying UVindex reveals potential genomic resources for better COVID-19 diagnosis and prevention

    No full text
    Coronavirus disease 2019 (COVID-19) has been a pandemic disease reported in almost every country and causes life-threatening, severe respiratory symptoms. Recent studies showed that various environmental selection pressures challenge the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infectivity and, in response, the virus engenders new mutations, leading to the emergence of more virulent strains of WHO concern. Advance prediction of the forthcoming virulent SARS-CoV-2 strains in response to the principal environmental selection pressures like temperature and solar UV radiation is indispensable to overcome COVID-19. To discover the UV-solar radiation-driven genomic adaption of SARS-CoV-2, a curated dataset of 2,500 full-grade genomes from five different UVindex regions (25 countries) was subjected to in-depth downstream genome-wide analysis. The recurrent variants that best respond to UV-solar radiations were extracted and extensively annotated to determine their possible effects and impacts on gene functions. This study revealed 515 recurrent single nucleotide variants (rcntSNVs) as SARS-CoV-2 genomic responses to UV-solar radiation, of which 380 were found to be distinct. For all discovered rcntSNVs, 596 functional effects (rcntEffs) were detected, containing 290 missense, 194 synonymous, 81 regulatory, and 31 in the intergenic region. The highest counts of missense rcntSNVs in spike (27) and nucleocapsid (26) genes explain the SARS-CoV-2 genomic adjustment to escape immunity and prevent UV-induced DNA damage, respectively. Among all, the most commonly observed rcntEffs were four missenses (RdRp-Pro327Leu, N-Arg203Lys, N-Gly204Arg, and Spike-Asp614Gly) and one synonymous (ORF1ab-Phe924Phe) functional effects. The highest number of rcntSNVs found distinct and were uniquely attributed to the specific UVindex regions, proposing solar-UV radiation as one of the driving forces for SARS-CoV-2 differential genomic adaptation. The phylogenetic relationship indicated the high UVindex region populating SARS-CoV-2 as the recent progenitor of all included samples. Altogether, these results provide baseline genomic data that may need to be included for preparing UVindex region-specific future diagnostic and vaccine formulations
    corecore