3 research outputs found

    Self-similar shear-thickening behavior in CTAB/NaSal surfactant solutions

    Full text link
    The effect of salt concentration Cs on the critical shear rate required for the onset of shear thickening and apparent relaxation time of the shear-thickened phase, has been investigated systematically for dilute CTAB/NaSal solutions. Experimental data suggest a self-similar behavior of the critical shear rate and relaxation time as functions of Cs. Specifically, the former ~ Cs^(-6) whereas the latter ~ Cs^(6) such that an effective Weissenberg number for the onset of the shear thickened phase is only weakly dependent on Cs. A procedure has been developed to collapse the apparent shear viscosity versus shear rate data obtained for various values of Cs into a single master curve. The effect of Cs on the elastic modulus and mesh size of the shear-induced gel phase for different surfactant concentrations is discussed. Experiments performed using different flow cells (Couette and cone-and-plate) show that the critical shear rate, relaxation time and the maximum viscosity attained are geometry-independent. The elastic modulus of the gel phase inferred indirectly by employing simplified hydrodynamic instability analysis of a sheared gel-fluid interface is in qualitative agreement with that predicted for an entangled phase of living polymers. A qualitative mechanism that combines the effect of Cs on average micelle length and Debye parameter with shear-induced configurational changes of rod-like micelles is proposed to rationalize the self-similarity of SIS formation.Comment: 27 pages, 17 figure
    corecore