5 research outputs found

    An Infant Formula with Partially Hydrolyzed Whey Protein Supports Adequate Growth and Is Safe and Well-Tolerated in Healthy, Term Infants: A Randomized, Double-Blind, Equivalence Trial

    Get PDF
    The current study evaluates the safety and tolerance of a partially hydrolyzed whey protein-based infant formula (PHF) versus an in intact cow's milk protein formula (IPF). Breastfed infants were included as a reference group. In a multi-country, multicenter, randomized, double-blinded, controlled clinical trial, infants whose mothers intended to fully formula feed were randomized to PHF (n= 134) or IPF (n= 134) from <= 14 days to 17 weeks of age. The equivalence analysis of weight gain per day within margins of +/-3 g/d (primary outcome), the recorded adverse events, growth and gastro-intestinal tolerance parameters were considered for the safety evaluation. Equivalence of weight gain per day from enrolment until 17 weeks of age was demonstrated in the PHF group compared to the IPF group (difference in means -1.2 g/d; 90% CI (-2.42; 0.02)), with estimated means (SE) of 30.2 (0.5) g/d and 31.4 (0.5) g/d, respectively. No significant differences in growth outcomes, the number, severity or type of (serious) adverse events and tolerance outcomes, were observed between the two formula groups. A partially hydrolyzed whey protein-based infant formula supports adequate infant growth, with a daily weight gain equivalent to a standard intact protein-based formula; it is also safe for use and well-tolerated in healthy term infants

    A bivalent meningococcal B vaccine in adolescents and young adults

    No full text
    BACKGROUND MenB-FHbp is a licensed meningococcal B vaccine targeting factor H-binding protein. Two phase 3 studies assessed the safety of the vaccine and its immunogenicity against diverse strains of group B meningococcus. METHODS We randomly assigned 3596 adolescents (10 to 18 years of age) to receive MenB-FHbp or hepatitis A virus vaccine and saline and assigned 3304 young adults (18 to 25 years of age) to receive MenB-FHbp or saline at baseline, 2 months, and 6 months. Immunogenicity was assessed in serum bactericidal assays that included human complement (hSBAs). We used 14 meningococcal B test strains that expressed vaccine-heterologous factor H-binding proteins representative of meningococcal B epidemiologic diversity; an hSBA titer of at least 1:4 is the accepted correlate of protection. The five primary end points were the proportion of participants who had an increase in their hSBA titer for each of 4 primary strains by a factor of 4 or more and the proportion of those who had an hSBA titer at least as high as the lower limit of quantitation (1:8 or 1:16) for all 4 strains combined after dose 3. We also assessed the hSBA responses to the primary strains after dose 2; hSBA responses to the 10 additional strains after doses 2 and 3 were assessed in a subgroup of participants only. Safety was assessed in participants who received at least one dose. RESULTS In the modified intention-to-treat population, the percentage of adolescents who had an increase in the hSBA titer by a factor of 4 or more against each primary strain ranged from 56.0 to 85.3% after dose 2 and from 78.8 to 90.2% after dose 3; the percentages of young adults ranged from 54.6 to 85.6% and 78.9 to 89.7%, after doses 2 and 3, respectively. Composite responses after doses 2 and 3 in adolescents were 53.7% and 82.7%, respectively, and those in young adults were 63.3% and 84.5%, respectively. Responses to the 4 primary strains were predictive of responses to the 10 additional strains. Most of those who received MenB-FHbp reported mild or moderate pain at the vaccination site. CONCLUSIONS MenB-FHbp elicited bactericidal responses against diverse meningococcal B strains after doses 2 and 3 and was associated with more reactions at the injection site than the hepatitis A virus vaccine and saline. (Funded by Pfizer; ClinicalTrials.gov numbers, NCT01830855 and NCT01352845.)
    corecore