89 research outputs found

    CLN8 disease caused by large genomic deletions

    Get PDF
    BACKGROUND: The presence of deletions can complicate genetic diagnosis of autosomal recessive disease. METHOD: The DNA of patients was analyzed in a diagnostic setting. RESULTS: We present three unrelated patients each carrying deletions that encompass the 37 kb CLN8 gene and discuss their phenotype. Two of the cases were hemizygous for a mutant allele - their deletions unmasked a mutation in CLN8 on the other chromosome. CONCLUSION: Microarray analysis is recommended in any patient suspected of NCL who is apparently homozygous for a mutation that is not present in one of the parents or when the family has no known consanguinity

    Sporadic fatal insomnia in a young woman: A diagnostic challenge: Case Report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sporadic fatal insomnia (sFI) and fatal familial insomnia (FFI) are rare human prion diseases.</p> <p>Case Presentation</p> <p>We report a case of a 33-year-old female who died of a prion disease for whom the diagnosis of sFI or FFI was not considered clinically. Following death of this patient, an interview with a close family member indicated the patient's illness included a major change in her sleep pattern, corroborating the reported autopsy diagnosis of sFI. Genetic tests identified no prion protein (PrP) gene mutation, but neuropathological examination and molecular study showed protease-resistant PrP (PrP<sup>res</sup>) in several brain regions and severe atrophy of the anterior-ventral and medial-dorsal thalamic nuclei similar to that described in FFI.</p> <p>Conclusions</p> <p>In patients with suspected prion disease, a characteristic change in sleep pattern can be an important clinical clue for identifying sFI or FFI; polysomnography (PSG), genetic analysis, and nuclear imaging may aid in diagnosis.</p

    Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy

    Get PDF
    Muscle contraction upon nerve stimulation relies on excitation–contraction coupling (ECC) to promote the rapid and generalized release of calcium within myofibers. In skeletal muscle, ECC is performed by the direct coupling of a voltage-gated L-type Ca2+ channel (dihydropyridine receptor; DHPR) located on the T-tubule with a Ca2+ release channel (ryanodine receptor; RYR1) on the sarcoplasmic reticulum (SR) component of the triad. Here, we characterize a novel class of congenital myopathy at the morphological, molecular, and functional levels. We describe a cohort of 11 patients from 7 families presenting with perinatal hypotonia, severe axial and generalized weakness. Ophthalmoplegia is present in four patients. The analysis of muscle biopsies demonstrated a characteristic intermyofibrillar network due to SR dilatation, internal nuclei, and areas of myofibrillar disorganization in some samples. Exome sequencing revealed ten recessive or dominant mutations in CACNA1S (Cav1.1), the pore-forming subunit of DHPR in skeletal muscle. Both recessive and dominant mutations correlated with a consistent phenotype, a decrease in protein level, and with a major impairment of Ca2+ release induced by depolarization in cultured myotubes. While dominant CACNA1S mutations were previously linked to malignant hyperthermia susceptibility or hypokalemic periodic paralysis, our findings strengthen the importance of DHPR for perinatal muscle function in human. These data also highlight CACNA1S and ECC as therapeutic targets for the development of treatments that may be facilitated by the previous knowledge accumulated on DHPR

    Desmoplastic infantile ganglioglioma with a malignant course

    No full text
    corecore