1,398 research outputs found
Path Integral for Quantum Operations
In this paper we consider a phase space path integral for general
time-dependent quantum operations, not necessarily unitary. We obtain the path
integral for a completely positive quantum operation satisfied Lindblad
equation (quantum Markovian master equation). We consider the path integral for
quantum operation with a simple infinitesimal generator.Comment: 24 pages, LaTe
Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches
Fractional generalization of an exterior derivative for calculus of
variations is defined. The Hamilton and Lagrange approaches are considered.
Fractional Hamilton and Euler-Lagrange equations are derived. Fractional
equations of motion are obtained by fractional variation of Lagrangian and
Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe
Bethe eigenvectors of higher transfer matrices
We consider the XXX-type and Gaudin quantum integrable models associated with
the Lie algebra . The models are defined on a tensor product irreducible
-modules. For each model, there exist one-parameter families of
commuting operators on the tensor product, called the transfer matrices. We
show that the Bethe vectors for these models, given by the algebraic nested
Bethe ansatz are eigenvectors of higher transfer matrices and compute the
corresponding eigenvalues.Comment: 48 pages, amstex.tex (ver 2.2), misprints correcte
Fractional Fokker-Planck Equation for Fractal Media
We consider the fractional generalizations of equation that defines the
medium mass. We prove that the fractional integrals can be used to describe the
media with noninteger mass dimensions. Using fractional integrals, we derive
the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski
equation). In this paper fractional Fokker-Planck equation for fractal media is
derived from the fractional Chapman-Kolmogorov equation. Using the Fourier
transform, we get the Fokker-Planck-Zaslavsky equations that have fractional
coordinate derivatives. The Fokker-Planck equation for the fractal media is an
equation with fractional derivatives in the dual space.Comment: 17 page
Fractional Liouville and BBGKI Equations
We consider the fractional generalizations of Liouville equation. The
normalization condition, phase volume, and average values are generalized for
fractional case.The interpretation of fractional analog of phase space as a
space with fractal dimension and as a space with fractional measure are
discussed. The fractional analogs of the Hamiltonian systems are considered as
a special class of non-Hamiltonian systems. The fractional generalization of
the reduced distribution functions are suggested. The fractional analogs of the
BBGKI equations are derived from the fractional Liouville equation.Comment: 20 page
Transport Equations from Liouville Equations for Fractional Systems
We consider dynamical systems that are described by fractional power of
coordinates and momenta. The fractional powers can be considered as a
convenient way to describe systems in the fractional dimension space. For the
usual space the fractional systems are non-Hamiltonian. Generalized transport
equation is derived from Liouville and Bogoliubov equations for fractional
systems. Fractional generalization of average values and reduced distribution
functions are defined. Hydrodynamic equations for fractional systems are
derived from the generalized transport equation.Comment: 11 pages, LaTe
Fractional Derivative as Fractional Power of Derivative
Definitions of fractional derivatives as fractional powers of derivative
operators are suggested. The Taylor series and Fourier series are used to
define fractional power of self-adjoint derivative operator. The Fourier
integrals and Weyl quantization procedure are applied to derive the definition
of fractional derivative operator. Fractional generalization of concept of
stability is considered.Comment: 20 pages, LaTe
Fractional Systems and Fractional Bogoliubov Hierarchy Equations
We consider the fractional generalizations of the phase volume, volume
element and Poisson brackets. These generalizations lead us to the fractional
analog of the phase space. We consider systems on this fractional phase space
and fractional analogs of the Hamilton equations. The fractional generalization
of the average value is suggested. The fractional analogs of the Bogoliubov
hierarchy equations are derived from the fractional Liouville equation. We
define the fractional reduced distribution functions. The fractional analog of
the Vlasov equation and the Debye radius are considered.Comment: 12 page
- …