2,062 research outputs found

    Dynamical differential equations compatible with rational qKZ equations

    Full text link
    For the Lie algebra glNgl_N we introduce a system of differential operators called the dynamical operators. We prove that the dynamical differential operators commute with the glNgl_N rational quantized Knizhnik-Zamolodchikov difference operators. We describe the transformations of the dynamical operators under the natural action of the glNgl_N Weyl group.Comment: 7 pages, AmsLaTe

    Quasi-Exact Solvability in Local Field Theory. First Steps

    Full text link
    The quantum mechanical concept of quasi-exact solvability is based on the idea of partial algebraizability of spectral problem. This concept is not directly extendable to the systems with infinite number of degrees of freedom. For such systems a new concept based on the partial Bethe Ansatz solvability is proposed. In present paper we demonstrate the constructivity of this concept and formulate a simple method for building quasi-exactly solvable field theoretical models on a one-dimensional lattice. The method automatically leads to local models described by hermitian hamiltonians.Comment: LaTeX, 11 page

    Phase-Space Metric for Non-Hamiltonian Systems

    Full text link
    We consider an invariant skew-symmetric phase-space metric for non-Hamiltonian systems. We say that the metric is an invariant if the metric tensor field is an integral of motion. We derive the time-dependent skew-symmetric phase-space metric that satisfies the Jacobi identity. The example of non-Hamiltonian systems with linear friction term is considered.Comment: 12 page

    Fractional Derivative as Fractional Power of Derivative

    Full text link
    Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of self-adjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.Comment: 20 pages, LaTe

    Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches

    Full text link
    Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler-Lagrange equations are derived. Fractional equations of motion are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe

    Pure Stationary States of Open Quantum Systems

    Full text link
    Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipative quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are suggested. We consider stationary states for the Lindblad equation. We discuss bifurcations of pure stationary states for open quantum systems which are quantum analogs of classical dynamical bifurcations.Comment: 7p., REVTeX

    Fractional Fokker-Planck Equation for Fractal Media

    Full text link
    We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived from the fractional Chapman-Kolmogorov equation. Using the Fourier transform, we get the Fokker-Planck-Zaslavsky equations that have fractional coordinate derivatives. The Fokker-Planck equation for the fractal media is an equation with fractional derivatives in the dual space.Comment: 17 page

    Psi-Series Solution of Fractional Ginzburg-Landau Equation

    Full text link
    One-dimensional Ginzburg-Landau equations with derivatives of noninteger order are considered. Using psi-series with fractional powers, the solution of the fractional Ginzburg-Landau (FGL) equation is derived. The leading-order behaviours of solutions about an arbitrary singularity, as well as their resonance structures, have been obtained. It was proved that fractional equations of order alphaalpha with polynomial nonlinearity of order ss have the noninteger power-like behavior of order α/(1−s)\alpha/(1-s) near the singularity.Comment: LaTeX, 19 pages, 2 figure

    Weyl Quantization of Fractional Derivatives

    Full text link
    The quantum analogs of the derivatives with respect to coordinates q_k and momenta p_k are commutators with operators P_k and $Q_k. We consider quantum analogs of fractional Riemann-Liouville and Liouville derivatives. To obtain the quantum analogs of fractional Riemann-Liouville derivatives, which are defined on a finite interval of the real axis, we use a representation of these derivatives for analytic functions. To define a quantum analog of the fractional Liouville derivative, which is defined on the real axis, we can use the representation of the Weyl quantization by the Fourier transformation.Comment: 9 pages, LaTe
    • …
    corecore