2,723 research outputs found

    Quantum phase transitions in the exactly solved spin-1/2 Heisenberg-Ising ladder

    Full text link
    Ground-state behaviour of the frustrated quantum spin-1/2 two-leg ladder with the Heisenberg intra-rung and Ising inter-rung interactions is examined in detail. The investigated model is transformed to the quantum Ising chain with composite spins in an effective transverse and longitudinal field by employing either the bond-state representation or the unitary transformation. It is shown that the ground state of the Heisenberg-Ising ladder can be descended from three exactly solvable models: the quantum Ising chain in a transverse field, the 'classical' Ising chain in a longitudinal field or the spin-chain model in a staggered longitudinal-transverse field. The last model serves in evidence of the staggered bond phase with alternating singlet and triplet bonds on the rungs of two-leg ladder, which appears at moderate values of the external magnetic field and consequently leads to a fractional plateau at a half of the saturation magnetization. The ground-state phase diagram totally consists of five ordered and one quantum disordered phase, which are separated from each other either by the lines of discontinuous or continuous quantum phase transitions. The order parameters are exactly calculated for all five ordered phases and the quantum disordered phase is characterized through different short-range spin-spin correlations.Comment: corrected version, figure A1 has been changed, accepted in J. Phys. A, 19 pages, 7 figure

    Field Theory of Mesoscopic Fluctuations in Superconductor/Normal-Metal Systems

    Full text link
    Thermodynamic and transport properties of normal disordered conductors are strongly influenced by the proximity of a superconductor. A cooperation between mesoscopic coherence and Andreev scattering of particles from the superconductor generates new types of interference phenomena. We introduce a field theoretic approach capable of exploring both averaged properties and mesoscopic fluctuations of superconductor/normal-metal systems. As an example the method is applied to the study of the level statistics of a SNS-junction.Comment: 4 pages, REVTEX, two eps-figures included; submitted to JETP letter

    Dynamics of spin correlations in the spin-1/2 isotropic XY chain in a transverse field

    Full text link
    Dynamic xx spin pair correlation functions for the isotropic spin-1/2 XY chain are calculated numerically for long open chains in the presence of a transverse magnetic field at finite temperature. As an application we discuss the temperature dependence of the spin-spin relaxation time in PrCl_3.Comment: 2 pages, latex, 2 figures, abstract of the paper presented at Ampere Summer School ``Applications of Magnetic Resonance in Novel Materials'' Nafplion, Greece, 3-9 September, 2000, partially published in J. Phys. A: Math. Gen. 33, 3063 (2000

    Universal spectral statistics of Andreev billiards: semiclassical approach

    Full text link
    The classification of universality classes of random-matrix theory has recently been extended beyond the Wigner-Dyson ensembles. Several of the novel ensembles can be discussed naturally in the context of superconducting-normal hybrid systems. In this paper, we give a semiclassical interpretation of their spectral form factors for both quantum graphs and Andreev billiards.Comment: final improved version (to be published in Physical Review E), 6 pages, revtex

    Effects of Dietary Zn/Se and α-Tocopherol Supplementation on Metabolic Milieu, Haemogram and Semen Traits of Breeding Stallions

    Get PDF
    Trace element status and metabolic milieu are sometimes overlooked in common veterinary clinical practice across animal species. The evaluation of requirements of trace elements, in fact, may be useful to prevent the perturbation of tissue-specific metabolic impair. In particular, essential trace elements in the diet play key roles within sub-cellular metabolic patterns with macro effects at the systemic level, like blood cell stability and semen quality. This effect was studied in breeding stallions, in which semen quality and haemogram are important for reproduction. A case-control feeding trial involved 40 stallions (age: 8–21 years; body weight, BW: 510–531 kg) of one stud centre, allotted to two experimental groups (n = 20 control, CON vs. n = 20 supplemented, SUPPL100), following a matched-pairs approach based on age. Supplemented stallions (SUPPL100) received a mixed mineral and vitamin supplement of Zn/Se and α-tocopherol (α-TOH) (100 g/day stallion) to compound feed, fed as control diet to horses of the control group (CON). Horses resulted deficient in circulating α-TOH and Zn at the start, though clinically healthy. After supplementation, different plasmatic levels of α-TOH, Zn and Se were found between groups. Circulating basophils (BASO) and mean cell haemoglobin concentration (MCHC) were affected by the dietary treatment (p < 0.05). Plasmatic Se affected monocyte count, haematocrit, mean cell volume and mean cell haemoglobin concentration. Semen traits were not affected by the dietary treatment per se, except for mobile/progressive sperm cells (%) of stallions aged > 13 years marginal circulating levels of α-TOH (p = 0.04). Ameliorating the micromineral status showed to improve the haemogram of stallions in view of circulating levels of Cu. Semen quality appeared to be strongly dependent on animal effects

    Time-dependent single molecule spectral lines

    Get PDF
    A general conceptual problem of time-dependent single molecule spectra is discussed theoretically in the framework of recently developed intensity-time-frequency correlation spectroscopy. It is shown that the new method is closely related to a "gedanken" three-pulse photon echo experiment done on an ensemble of identical molecules interacting with statistically identical microscopic environments. The correlation function is an integral transform (under certain conditions a Fourier transform) of the echo amplitude as a function of the delay between the first and the second pulses. [S0163-1829(99)10907-X]

    Quantum interference and the formation of the proximity effect in chaotic normal-metal/superconducting structures

    Full text link
    We discuss a number of basic physical mechanisms relevant to the formation of the proximity effect in superconductor/normal metal (SN) systems. Specifically, we review why the proximity effect sharply discriminates between systems with integrable and chaotic dynamics, respectively, and how this feature can be incorporated into theories of SN systems. Turning to less well investigated terrain, we discuss the impact of quantum diffractive scattering on the structure of the density of states in the normal region. We consider ballistic systems weakly disordered by pointlike impurities as a test case and demonstrate that diffractive processes akin to normal metal weak localization lead to the formation of a hard spectral gap -- a hallmark of SN systems with chaotic dynamics. Turning to the more difficult case of clean systems with chaotic boundary scattering, we argue that semiclassical approaches, based on classifications in terms of classical trajectories, cannot explain the gap phenomenon. Employing an alternative formalism based on elements of quasiclassics and the ballistic σ\sigma-model, we demonstrate that the inverse of the so-called Ehrenfest time is the relevant energy scale in this context. We discuss some fundamental difficulties related to the formulation of low energy theories of mesoscopic chaotic systems in general and how they prevent us from analysing the gap structure in a rigorous manner. Given these difficulties, we argue that the proximity effect represents a basic and challenging test phenomenon for theories of quantum chaotic systems.Comment: 21 pages (two-column), 6 figures; references adde

    Interferometric signatures of single molecules

    Get PDF
    We built an, interferometer where one of the two slits of a classical Young's setup is replaced by a single molecule embedded in a solid matrix. This enabled direct measurement of the first order coherence of the 0-0 single-molecule emission, which at high excitation powers proves to be split in coherent and incoherent parts. We demonstrate an order of magnitude higher precision in axial localization of single molecules in comparison with that of confocal microscopy. These experiments open a possibility for single-molecule holography. Detection of single molecules with low luminescence quantum yields could be another application of this technique

    Search for Outer Massive Bodies around Transiting Planetary Systems: Candidates of Faint Stellar Companions around HAT-P-7

    Full text link
    We present results of direct imaging observations for HAT-P-7 taken with the Subaru HiCIAO and the Calar Alto AstraLux. Since the close-in transiting planet HAT-P-7b was reported to have a highly tilted orbit, massive bodies such as giant planets, brown dwarfs, or a binary star are expected to exist in the outer region of this system. We show that there are indeed two candidates for distant faint stellar companions around HAT-P-7. We discuss possible roles played by such companions on the orbital evolution of HAT-P-7b. We conclude that as there is a third body in the system as reported by Winn et al. (2009, ApJL, 763, L99), the Kozai migration is less likely while planet-planet scattering is possible.Comment: 8 pages, 3 figures, 2 tables, PASJ in pres

    Magnetolocalization in disordered quantum wires

    Full text link
    The magnetic field dependent localization in a disordered quantum wire is considered nonperturbatively. An increase of an averaged localization length with the magnetic field is found, saturating at twice its value without magnetic field. The crossover behavior is shown to be governed both in the weak and strong localization regime by the magnetic diffusion length L_B. This function is derived analytically in closed form as a function of the ratio of the mean free path l, the wire thickness W, and the magnetic length l_B for a two-dimensional wire with specular boundary conditions, as well as for a parabolic wire. The applicability of the analytical formulas to resistance measurements in the strong localization regime is discussed. A comparison with recent experimental results on magnetolocalization is included.Comment: 22 pages, RevTe
    corecore