2 research outputs found

    Evidence for two distinct scales of current flow in polycrystalline Sm and Nd iron oxypnictides

    Full text link
    Early studies have found quasi-reversible magnetization curves in polycrystalline bulk rare-earth iron oxypnictides that suggest either wide-spread obstacles to intergranular current or very weak vortex pinning. In the present study of polycrystalline samarium and neodymium rare-earth iron oxypnictide samples made by high pressure synthesis, the hysteretic magnetization is significantly enhanced. Magneto optical imaging and study of the field dependence of the remanent magnetization as a function of particle size both show that global currents over the whole sample do exist but that the intergranular and intragranular current densities have distinctively different temperature dependences and differ in magnitude by about 1000. Assuming that the highest current density loops are restricted to circulation only within grains leads to values of ~5 MA/cm2 at 5 K and self field, while whole-sample current densities, though two orders of magnitude lower are 1000-10000 A/cm2, some two orders of magnitude higher than in random polycrystalline cuprates. We cannot yet be certain whether this large difference in global and intragrain current density is intrinsic to the oxypnictides or due to extrinsic barriers to current flow, because the samples contain significant second phase, some of which wets the grain boundaries and produces evidences of SNS proximity effect in the whole sample critical current.Comment: 28 pages, 14 figure

    Evidence for Supercurrent Connectivity in Conglomerate Particles in NdFeAsO1-d

    Full text link
    Here we use global and local magnetometry and Hall probe imaging to investigate the electromagnetic connectivity of the superconducting current path in the oxygen-deficient fluorine-free Nd-based oxypnictides. High resolution transmission electron microscopy and scanning electron microscopy show strongly-layered crystallites, evidence for a ~ 5nm amorphous oxide around individual particles, and second phase neodymium oxide which may be responsible for the large paramagnetic background at high field and at high temperatures. From global magnetometry and electrical transport measurements it is clear that there is a small supercurrent flowing on macroscopic sample dimensions (mm), with a lower bound for the average (over this length scale) critical current density of the order of 103 A/cm2. From magnetometry of powder samples and local Hall probe imaging of a single large conglomerate particle ~120 microns it is clear that on smaller scales, there is better current connectivity with a critical current density of the order of 5 x 104 A/cm2. We find enhanced flux creep around the second peak anomaly in the magnetisation curve and an irreversibility line significantly below Hc2(T) as determined by ac calorimetry.Comment: 11 pages, 4 figure
    corecore